Rocket Performance

- Lecture #02 August 31, 2023
- The rocket equation
- Mass ratio and performance
- Structural and payload mass fractions
- Regression analysis
- Multistaging
- Optimal ΔV distribution between stages
- Trade-off ratios
- Parallel staging
- Modular staging UNIVERSITY OF MARYLAND

© 2023 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Derivation of the Rocket Equation

M = mv

• Momentum at time t:

- Momentum at time $t+\Delta t$: Some algebraic manipulation gives:
- Take to limits and integrate: $\int_{m_{final}}^{m_{final}} dm = -$

 $M = (m - \Delta m)(V + \Delta v) + \Delta m (v - V_e)$

 $m\Delta v = -\Delta m V_{\rho}$

M

2

*m*_{initial}

 $\int^{V_{final}} dv$

The Rocket Equation Alternate forms *m*_{initial} Basic definitions / concepts – Mass ratio – Nondimensional velocity change ΔV "Velocity ratio" UNIVERSITY OF MARYLAND

 $r \equiv \frac{m_{final}}{r \equiv e} = e^{-\frac{\Delta V}{V_e}}$ $\Delta v = -V_e \ln\left(\frac{m_{final}}{m_{initial}}\right) = -V_e \ln r$ $r \equiv \frac{m_{final}}{m_{initial}} \text{ or } \mathfrak{R} \equiv \frac{m_{initial}}{m_{final}}$ V_e **Rocket Performance**

3

Rocket Equation (First Look)

4

Sources and Categories of Vehicle Mass

Payload Propellants Structure Propulsion Avionics Power Mechanisms Thermal Etc.

5

Sources and Categories of Vehicle Mass

Payload Propellants Inert Mass Structure Propulsion Avionics Power Mechanisms Thermal Etc.

6

ENAE 483/788D – Principles of Space Systems Design

Basic Vehicle Parameters

- Basic mass summary
- Inert mass fraction

Payload fraction

UNIVERSITY OF MARYLAND

Parametric mass ratio

 $m_o = m_{pl} + m_{pr} + m_{in}$

 $m_o \equiv \text{initial mass}$ $m_{pl} \equiv$ payload mass $m_{pr} \equiv$ propellant mass $m_{in} \equiv \text{inert mass}$

 $\delta \equiv \frac{m_{in}}{m_o} = \frac{m_{in}}{m_{pl} + m_{pr} + m_{in}}$

m_{pl}

 $m_o m_{pl} + m_{pr} + m_{in}$

 $r = \lambda + \delta$

7

 $\lambda \equiv \frac{m_{pl}}{2}$

ENAE 483/788D – Principles of Space Systems Design

Regression Analysis of Existing Vehicles

Veh/Stage	prop mass	gross mass	Туре	Propellants	lsp vac	isp sl	sigma	eps	
	(lbs)	(lbs)			(sec)	(sec)			
Delta 6925 Stage 2	13,367	15,394	Storat	N2O4-A50	319.4		0.152	0.132	C
Delta 7925 Stage 2	13,367	15,394	Storab	N2O4-A50	319.4		0.152	0.132	C
Titan II Stage 2	59,000	65,000	Storab	N2O4-A50	316.0		0.102	0.092	
Titan III Stage 2	77,200	83,600	Storab	N2O4-A50	316.0		0.083	0.077	
Titan IV Stage 2	77,200	87,000	Storab	N2O4-A50	316.0		0.127	0.113	C
Proton Stage 3	110,000	123,000	Storab	N2O4-A50	315.0		0.118	0.106	C
Titan II Stage 1	260,000	269,000	Storab	N2O4-A50	296.0		0.035	0.033	C
Titan III Stage 1	294,000	310,000	Storab	N2O4-A50	302.0		0.054	0.052	C
Titan IV Stage 1	340,000	359,000	Storab	N2O4-A50	302.0		0.056	0.053	C
Proton Stage 2	330,000	365,000	Storab	N2O4-A50	316.0		0.106	0.096	C
Proton Stage 1	904,000	1,004,000	Storab	N2O4-A50	316.0	285.0	0.111	0.100	C
average					312.2	285.0	0.100	0.089	0
standard deviation					8.1		0.039	0.033	0

A Word About Specific Impulse

• Defined as "thrust/propellant used" – English units: lbs thrust/(lbs prop/sec)=sec Metric units: N thrust/(kg prop/sec)=m/sec Two ways to regard discrepancy -– "lbs" is not mass in English units - should be slugs - Isp = "thrust/weight flow rate of propellant" - if I_{sp} is in seconds, then $v_e = g_o I_{sp}$ where g_o is for unit conversion (i.e., 9.8 m/sec everywhere!) • If the real intent of specific impulse is $I_{sp} = \frac{T}{\dot{m}}$ and $T = \dot{m}V_e$ then $I_{sp} = V_e!!!$ \mathcal{M}

11

Inert Mass Fractions for Existing LVs

12

Regression Analysis

• Given a set of N data points (x_i, y_i) • Linear curve fit: y = Ax + B– find A and B to minimize sum squared error

i=1- Analytical solutions exist, or use Solver in Excel • Power law fit: $y = Bx^A$

• Polynomial, exponential, many other fits possible

i=1

13

 $\operatorname{error} = \sum (Ax_i + B - y_i)^2$

 $\operatorname{error} = \sum \left[A \log(x_i) + B - \log(y_i) \right]^2$

Solution of Least-Squares Linear Regression

 $\frac{\partial(\text{error})}{\partial A} = 2\sum_{i=1}^{N} (Ax_i + B - y_i)x_i = 0$ $\frac{\partial(\text{error})}{\partial B} = 2\sum_{i=1}^{N} (Ax_i + B - y_i) = 0$

 $A\sum_{i=1}^{N} x_{i}^{2} + B\sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} x_{i}y_{i} = 0$ i=1

$A = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{N \sum x_i^2 - (\sum x_i)^2}$

14

i = 1 i = 1 $A \sum_{i=1}^{N} x_i + NB - \sum_{i=1}^{N} y_i = 0$ i=1i=1

 $B = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{N \sum x_i^2 - (\sum x_i)^2}$

Regression Analysis - Storables

15

ENAE 483/788D – Principles of Space Systems Design

Regression Values for Design Parameters

	Vacuum Ve (m/sec)	Inert Mass Fraction δ	$Max \Delta V$ (m/sec)
LOX/LH2	4273	0.075	11,070
LOX/RP-1	3136	0.063	8664
Storables	3058	0.061	8575
Solids	2773	0.087	6783

Revised Analysis With & Instead of \delta m_{in} $\equiv \frac{m_{in}}{m_{in} + m_{pr}} \qquad r = \frac{m_{pl} + m_{in}}{m_{pl} + m_{pr} + m_{pr}}$ $r = \frac{m_{pr} + m_{pr}}{m_p}$ $m_{pr}+$ $r = \frac{\rho + \epsilon}{\rho + 1} \text{ wh}$ m_{pr} = 1 - PMF $\epsilon =$ $m_{in} + m_{pr}$ *PMF* = Propellant Mass Fraction UNIVERSITY OF MARYLAND

 ϵ = stage inert mass fraction $r = \lambda + \delta \Longrightarrow \lambda = r - \delta$

$$+m_{pr}+m_{in}$$

	m_{in}
m_{in}	$m_{pr} + m_{in}$
	$m_{pr} + m_{in}$
m_{in} \top	$m_{pr} + m_{in}$

here
$$\rho \equiv \frac{m_{pl}}{m_{in} + m_{pr}}$$

$$1 - r$$

17

Economy of Scale for Stage Size

18

Stage Inert Mass Fraction Estimation

 $\epsilon_{LOX/LH2} = 0.987 \ (M_{stage} \langle kg \rangle)^{-0.183}$

 $\epsilon_{storables} = 1.6062 \ (M_{stage} \langle kg \rangle)^{-0.275}$

40,00060,00080,000100,000Stage Gross Mass (kg)Note: "storables" also
pertains to LOX/
hydrocarbon or LCH4

19

Calculating Mo from Mpl Given Δv and I_{sp}

Given δ

Given ϵ $m_{stage} = m_{in} + m_{pr}; m_{in}$

 $\lambda = r - \delta \implies$

 $m_{pl} + m_{in}$ $m_{pl} + m_{in} + m_{pr}$ $(r-\epsilon)m_{pl}$

*m*_{stage}

$$r = e^{-\frac{\Delta v}{gI_{sp}}}$$

$$m_o = \frac{m_{pl}}{\lambda}$$

$$=\epsilon m_{stage}; m_o = m_{pl} + m_{stage}$$

20

$$= \frac{m_{pl} + \epsilon m_{stage}}{m_{pl} + m_{stage}}$$

$$\implies m_o = \left(\frac{1-\epsilon}{r-\epsilon}\right) m_{pl}$$

The Rocket Equation for Multiple Stages

Assume two stages

 $\Delta V_1 = -V_{e1} \ln \left(\frac{m_{final1}}{m_{initial1}}\right) = -V_{e1} \ln(r_1)$ $\Delta V_2 = -V_{e2} \ln \left(\frac{m_{final2}}{m_{initial2}}\right) = -V_{e2} \ln(r_2)$

• Assume $V_{e1} = V_{e2} = V_{e}$

21

$\Delta V_1 + \Delta V_2 = -V_e \ln(r_1) - V_e \ln(r_2) = -V_e \ln(r_1 r_2)$

Continued Look at Multistaging

• There's a historical tendency to define $r_0 = r_1 r_2$

• But it's important to remember that it's really

 $\Delta V_1 + \Delta V_2 = -V_e \ln\left(r_1 r_2\right)$

• And that r₀ has no physical significance, since

- $\Delta V_1 + \Delta V_2 = -V_e \ln (r_1 r_2) = -V_e \ln (r_0)$

$$V = -V_e \ln \left(\frac{m_{final1}}{m_{initial1}} \frac{m_{final2}}{m_{initial2}} \right)$$

 $m_{final1} \neq m_{initial2} \Rightarrow r_0 \neq \frac{m_{final2}}{m_{final2}}$ $m_{initial1}$

22

Multistage Inert Mass Fraction

Total inert mass fraction

 Convert to dimensionless parameters General form of the equation j=1UNIVERSITY OF MARYLAND

23

Multistage Payload Fraction

Total payload fraction (3 stage example)

Convert to dimensionless parameters

Generic form of the equation

$\lambda_0 = \frac{m_{pl}}{m_0} = \frac{m_{pl}}{m_{0,3}} \frac{m_{0,3}}{m_{0,2}} \frac{m_{0,2}}{m_0}$ $\lambda_0 = \lambda_3 \lambda_2 \lambda_1$

n stages $\lambda_0 = \lambda_i$ j=1

24

Effect of Staging

25

ENAE 483/788D – Principles of Space Systems Design

Effect of ΔV **Distribution**

26

ΔV Distribution and Design Parameters

27

ENAE 483/788D – Principles of Space Systems Design

Lagrange Multipliers

Given an objective function

subject to constraint function

 Create a new objective function Solve simultaneous equations

z = g(x) $y = f(x) + \lambda[g(x) - z]$

y = f(x)

28

 $\frac{\partial y}{\partial x} = 0 \qquad \frac{\partial y}{\partial \lambda} = 0$

Optimum ΔV **Distribution** Between Stages Maximize payload fraction (2 stage case) $\lambda_0 = \lambda_1 \lambda_2 = (r_1 - \delta_1)(r_2 - \delta_2)$ subject to constraint function $\Delta V_{total} = \Delta V_1 + \Delta V_2$ Create a new objective function $\lambda_o = \left(e^{\frac{-\Delta V_1}{V_{e,1}}} - \delta_1\right) \left(e^{\frac{-\Delta V_2}{V_{e,2}}} - \delta_2\right) + K\left[\Delta V_1 + \Delta V_2 - \Delta V_{total}\right]$ Very messy for partial derivatives!

Rocket Performance ENAE 483/788D – Principles of Space Systems Design

29

Optimum ΔV **Distribution** (continued)

- Use substitute objective function
- Create a new constrained objective function
- Take partials and set equal to zero

$$\frac{\partial \left[ln\left(\lambda_{o}\right) \right]}{\partial r_{1}} = 0 \quad \frac{\partial \left[ln\left(\lambda_{o}\right) \right]}{\partial r_{1}} = 0$$

 $max(\lambda_o) \iff max[ln(\lambda_o)]$ $ln(\lambda_{o}) = ln(r_{1} - \delta_{1}) + ln(r_{2} - \delta_{2}) + K[\Delta V_{1} + \Delta V_{2} - \Delta V_{total}]$

 $\frac{\ln\left(\lambda_{o}\right)\right]}{\partial r_{2}} = 0 \quad \frac{\partial\left[\ln\left(\lambda_{o}\right)\right]}{\partial K} = 0$

Optimum ΔV **Special Cases** "Generic" partial of objective function $\frac{\partial \left[ln\left(\lambda_o\right) \right]}{\partial r_i} = \frac{1}{r_i - \delta_i} + K \frac{V_{e,i}}{r_i} = 0$ • Case 1: $\delta_1 = \delta_2 V_{e,1} = V_{e,2}$ • Same principle holds for n stages $r_1 = r_2 = \cdots = r_n \Longrightarrow$ $\Delta V_1 = \Delta V_2 = \dots = \Delta V_n = \frac{\Delta V_{total}}{\Delta V_1}$ For any other case, you'll have to solve it numerically... UNIVERSITY OF MARYLAND 31

 $r_1 = r_2 \Longrightarrow \Delta V_1 = \Delta V_2 = \frac{\Delta V_{total}}{2}$

Sensitivity to Inert Mass

ΔV for multistaged rocket

32

 $\Delta V_{tot} = \sum_{k=1}^{n} \Delta V_k = \sum_{k=1}^{n} V_{e,k} \ln\left(\frac{m_{o,k}}{m_{f,k}}\right)$

 \boldsymbol{n} $m_{o,k} = m_{pl} + m_{pr,k} + m_{in,k} + \sum (m_{pr,j} + m_{in,j})$ j = k+1

n $m_{f,k} = m_{pl} + m_{in,k} + \sum (m_{pr,j} + m_{in,j})$ j = k + 1

Finding Payload Sensitivity to Inert Mass

• Given the equation linking mass to ΔV , take

and solve to find

 This equation shows the "trade-off ratio" - Δpayload resulting from a change in inert mass for stage k (for a vehicle with N

 $\frac{\partial(\Delta V_{tot})}{\partial m_{pl}} dm_{pl} + \frac{\partial(\Delta V_{tot})}{\partial m_{in,j}} dm_{in,j} = 0$

 $\frac{\partial m_{pl}}{\partial m_{in,k}} \bigg|_{\partial(\Delta V_{tot})=0} = \frac{-\sum_{j=1}^{k} V_{e,j} \left(\frac{1}{m_{o,j}} - \frac{1}{m_{f,j}}\right)}{\sum_{\ell=1}^{N} V_{e,\ell} \left(\frac{1}{m_{o,\ell}} - \frac{1}{m_{f,\ell}}\right)}$

Trade-off Ratio Example: Gemini-Titan II

34

	Stage 1	Stage 2
(xg)	150,500	32,630
(g)	39,370	6099
sec)	2900	3097
bl a,k	-0.1164	

Payload Sensitivity to Propellant Mass

• In a similar manner, solve to find

of additional propellant mass (all other parameters held constant)

This equation gives the change in payload mass as a function

Trade-off Ratio Example: Gemini-Titan II

 $m_o(kg)$ $m_f(kg)$ v_e (m/sec) **d**m_{pl} $\partial m_{in,k}$ ∂m_{pl} $\partial m_{pr,k}$

36

Stage 1	Stage 2	
50,500	32,630	
39,370	6099	
2900	3097	
0.1164		
04124	0.2443	

ENAE 483/788D – Principles of Space Systems Design

Parallel Staging

- Multiple dissimilar engines burning simultaneously
- Frequently a result of upgrades to operational systems
- General case requires "brute force" numerical performance analysis

37

Parallel-Staging Rocket Equation

- Momentum at time t:
- Momentum at time $t+\Delta t$: (subscript "b"=boosters; "c"=core vehicle)

$$M = (m - \Delta m_b - \Delta$$

Assume thrust (and mass flow rates) constant

M = mv

$(m_c)(v + \Delta v)$ $+\Delta m_b(v - V_{e,b}) + \Delta m_c(v - V_{e,c})$

Parallel-Staging Rocket Equation

Rocket equation during booster burn

where χ = fraction of core propellant remaining after booster burnout, and where

39

 $\Delta V = -\bar{V}_e \ln\left(\frac{m_{final}}{m_{initial}}\right) = -\bar{V}_e \ln\left(\frac{m_{in,b} + m_{in,c} + \chi m_{pr,c} + m_{0,2}}{m_{in,b} + m_{pr,b} + m_{in,c} + m_{pr,c} + m_{0,2}}\right)$

 $\bar{V}_e = \frac{V_{e,b}\dot{m}_b + V_{e,c}\dot{m}_c}{\dot{m}_b + \dot{m}_c} = \frac{V_{e,b}m_{pr,b} + V_{e,c}(1-\chi)m_{pr,c}}{m_{pr,b} + (1-\chi)m_{pr,c}}$

Analyzing Parallel-Staging Performance Parallel stages break down into pseudo-serial stages: Stage "0" (boosters and core)

• Stage "1" (core alone)

Subsequent stages are as before

 $\Delta V_0 = -\bar{V}_e \ln\left(\frac{m_{in,b} + m_{in,c} + \chi m_{pr,c} + m_{0,2}}{m_{in,b} + m_{pr,b} + m_{in,c} + m_{pr,c} + m_{0,2}}\right)$

 $\Delta V_1 = -V_{e,c} \ln \left(\frac{m_{in,c} + m_{0,2}}{m_{in,c} + \chi m_{pr,c} + m_{0,2}} \right)$

40

Parallel Staging Example: Space Shuttle

• 2 x solid rocket boosters (data below for single SRB) – Gross mass 589,670 kg – Empty mass 86,183 kg – Isp 269 sec – Burn time 124 sec • External tank (space shuttle main engines) – Gross mass 750,975 kg – Empty mass 29,930 kg – Isp 455 sec – Burn time 480 sec

UNIVERSITY OF MARYLAND

41

Shuttle Parallel Staging Example

 $V_{e,b} = gI_{sp,e} = (9.8)(269) = 2636\frac{m}{sec} \qquad V_{e,c} = 4459\frac{m}{sec}$ $\chi = \frac{480 - 124}{480} = 0.7417$

 $\bar{V}_e = \frac{2636(1,007,000) + 4459(721,000)(1 - .7417)}{1,007,000 + 721,000(1 - .7417)} = 2921 \frac{m}{sec}$

 $\Delta V_1 = -4459 \ln \frac{154,900}{689,700} = 6659 \frac{m}{sec}$

42

 $\Delta V_0 = -2921 \ln \frac{862,000}{3,062,000} = 3702 \frac{m}{sec}$

 \mathcal{M} $\Delta V_{tot} = 10,360$ sec

Modular Staging

- Use identical modules to form multiple stages
- Have to cluster modules on lower stages to make up for nonideal ΔV distributions Advantageous from production and development cost standpoints

43

Module Analysis

 All modules have the same inert mass and propellant mass same payload mass or the same $\delta \implies$ use ϵ instead

• Because δ varies with payload mass, not all modules have the

Rocket Performance ENAE 483/788D – Principles of Space Systems Design

44

Rocket Equation for Modular Boosters

• Assuming n modules in stage 1,

• If all 3 stages use same modules, n_i for stage j,

where

 $\rho_{pl} \equiv \frac{m_{pl}}{m}; \ m_{mod} = m_{in} + m_{pr}$ m_{mod}

45

 $r_1 = \frac{n(m_{in}) + m_{o2}}{n(m_{in} + m_{pr}) + m_{o2}} = \frac{n\varepsilon + \frac{m_{o2}}{m_{mod}}}{n + \frac{m_{o2}}{m_{mod}}}$

 $r_1 = \frac{n_1 \varepsilon + n_2 + n_3 + \rho_{pl}}{n_1 + n_2 + n_3 + \rho_{pl}}$

Example: Conestoga 1620 (EER) • Small launch vehicle (1 flight, 1 failure)

- Payload 900 kg
- Module gross mass 11,400 kg
- Module empty mass 1,400 kg
- Exhaust velocity 2754 m/sec
- Staging pattern
 - 1st stage 4 modules
 - 2nd stage 2 modules
 - 3rd stage 1 module
 - 4th stage Star 48V (gross mass 2200 kg,

empty mass 140 kg, V_e 2842 m/sec) UNIVERSITY OF MARYLAND

46

Conestoga 1620 Performance • 4th stage ΔV $\Delta V_4 = -V_{e4} \ln \frac{m_{f4}}{m_{o4}} = -2842 \ln \frac{900 + 140}{900 + 2200} = 3104 \frac{\text{m}}{\text{sec}}$ Treat like three-stage modular vehicle; M_{pl}=3100 kg $\epsilon = \frac{m_{in}}{m_{mod}} = \frac{1400}{11400} = 0.1228$ $\rho_{pl} = \frac{m_{pl}}{m_{mod}} = \frac{3100}{11400} = 0.2719$ $n_1 = 4; n_2 = 2; n_3 = 1$ UNIVERSITY OF MARYLAND

47

Constellation 1620 Performance (cont.)

 $r_1 = \frac{n_1\epsilon + n_2 + n_3 + \rho_{pl}}{n_1 + n_2 + n_3 + \rho_{pl}} = \frac{4 \times 0.1228 + 2 + 1 + 0.2719}{4 + 2 + 1 + 0.2719} = 0.5175$ $r_2 = \frac{n_2\epsilon + n_3 + \rho_{pl}}{n_2 + n_3 + \rho_{pl}} = \frac{2 \times 0.1228 + 1 + 0.2719}{2 + 1 + 0.2719} = 0.4638$ $r_{3} = \frac{n_{3}\epsilon + \rho_{pl}}{n_{3} + \rho_{pl}} = \frac{1 \times 0.1228 + 0.2719}{1 + 0.2719} = 0.3103$ $V_{1} = 1814 \frac{\text{m}}{\text{sec}}; V_{2} = 2116 \frac{\text{m}}{\text{sec}}$ $V_{3} = 3223 \frac{\text{m}}{\text{sec}}; V_{4} = 3104 \frac{\text{m}}{\text{sec}}$ $V_{total} = 10,257 \frac{\text{m}}{\text{sec}}$ sec

ENAE 483/788D – Principles of Space Systems Design

Discussion about Modular Vehicles

 Modularity has several advantages - Saves money (smaller modules cost less to develop) – Saves money (larger production run = lower cost/module) - Allows resizing launch vehicles to match payloads stage to minimize total number of modules Generally close to optimum by doubling number of modules at each lower stage

NIVERSITY OF MARYLAND

• Trick is to optimize number of stages, number of modules/

• Have to worry about packing factors, complexity

49

OTRAG - 1977-1983

Today's Tools

• Mass ratios fractions (both δ and ϵ) • Regression analysis Staging calculations • Optimization of Δv distribution between stages • Trade-off ratios Parallel staging calculations Modular vehicle calculations • UNIVERSITY OF ARYLAND

• Estimation of vehicle masses from Δv and v_{ρ} and inert mass

51

