ENAE 483/788D LECTURE \#03 (SYSTEMS ANALYSIS) - FALL, 2023

We're going to again use some of the rocket performance calculations from Lecture 2, but this time you're going to do trade studies on the best design configuration.

Your goal is to design a launch vehicle optimized for delivering a payload to a translunar orbit (required $\Delta v=11,000 \mathrm{~m} / \mathrm{sec}$). The first stage will use $\mathrm{LOX} / \mathrm{LCH}_{2}$ with an exhaust velocity of $3800 \mathrm{~m} / \mathrm{sec}$. The second stage will use LOX $/ \mathrm{LH}_{2}$ with an exhaust velocity of $4500 \mathrm{~m} / \mathrm{sec}$. The design payload will be $25,000 \mathrm{~kg}$. Note: You will not be able to solve these problems analytically. You should set up the equations in Matlab or Excel and let their numerical solvers find the solution.
(1) Assume that the inert mass fractions are $\delta_{1}=0.05$, and $\delta_{2}=0.08$. If the Δv is distributed evenly between the stages, find $m_{0}, m_{p r, 1}, m_{i n, 1}, m_{p r, 2}$, and $m_{i n, 2}$

$$
\begin{gathered}
r_{1}=e^{-\frac{\Delta v}{v_{e, 1}}}=e^{-\frac{5500}{3800}}=0.2352 \\
r_{2}=e^{-\frac{\Delta v}{v_{e, 2}}}=e^{-\frac{5500}{4500}}=0.2946 \\
\lambda_{2}=r_{2}-\delta_{2}=0.2946-0.08=0.2146 \Longrightarrow m_{o, 2}=\frac{m_{p l}}{\lambda_{2}}=\frac{25000}{0.2146}=116,500 \mathrm{~kg} \\
m_{i n, 2}=\delta_{2} m_{o, 2}=0.08(116500)=9321 \mathrm{~kg} ; m_{p r, 2}=\left(1-r_{2}\right) m_{o, 2}=(1-0.2946) 116500=82,190 \mathrm{~kg} \\
\lambda_{1}=r_{1}-\delta_{1}=0.2352-0.05=0.1852 \Longrightarrow m_{o, 1}=\frac{m_{o, 2}}{\lambda_{1}}=\frac{116500}{0.1852}=629,100 \mathrm{~kg} \\
m_{i n, 1}=\delta_{1} m_{o, 1}=0.05(629100)=31,460 \mathrm{~kg} ; m_{p r, 1}=\left(1-r_{1}\right) m_{o, 1}=(1-0.2352) 629100=481,200 \mathrm{~kg}
\end{gathered}
$$

(2) Continue to assume that the inert mass fractions are $\delta_{1}=0.05$, and $\delta_{2}=0.08$. Find the Δv distribution between the stages that minimizes the vehicle gross mass at liftoff m_{0}. (For the answer, list $\Delta v_{1}, \Delta v_{2}, m_{0}, m_{p r, 1}, m_{i n, 1}, m_{p r, 2}$, and $m_{i n, 2}$

Let Δv_{1} be a variable, so $\Delta v_{2}=11,000-\Delta v_{1}$. Set up all the equations above in Excel or Matlab and command it to find the value of Δ_{1} that minimizes $m_{o}\left(=m_{o, 1}\right)$. You will get

$$
\begin{array}{ll}
\Delta v_{2}=6087 \mathrm{~m} / \mathrm{sec} & m_{o, 2}=140,000 \mathrm{~kg} \\
\Delta v_{1}=4913 \mathrm{~m} / \mathrm{sec} & m_{o, 2}=11,200 \mathrm{~kg} \\
\Delta 23,800 \mathrm{~kg} & m_{p r, 2}=103,800 \mathrm{~kg} \\
\Delta v_{i n, 1}=31,190 \mathrm{~kg} & m_{p r, 2}=452,600 \mathrm{~kg}
\end{array}
$$

(3) The heuristic equations for stage inert mass fraction ϵ (equals $\frac{m_{i n}}{m_{i n}+m_{p r}}$) should be more accurate than assumed values for δ_{1} and δ_{2}. Using the data you calculated in (2) as your initial estimate, calculate the predicted values for ϵ_{2} and ϵ_{2} using the equations on page 19 of the Lecture 2 slide set. (The first stage will use the equation labeled "storables"; the second stage will obviously use the equation for $\mathrm{LOX} / \mathrm{LH}_{2}$. Sorry, I mistakenly said "page 17 " for the original problem statement.)

First calculate total stage masses $m_{s t, 2}=m_{i n, 2}+m_{p r, 2}=11200+103800=115,000 \mathrm{~kg}$. Likewise, $m_{s t, 1}=m_{i n, 1}+m_{p r, 1}=31190+452600=483,700 \mathrm{~kg}$. Just for the fun of it, the calculated values of ϵ in this case are

$$
\epsilon_{2, \text { calc }}=\frac{m_{\text {in }, 2}}{m_{\text {stage }, 2}}=\frac{11,200}{103,800}=0.0974
$$

$$
\epsilon_{1, \text { calc }}=\frac{m_{i n, 1}}{m_{\text {stage }, 1}}=\frac{31,190}{452,600}=0.0645
$$

From page 19 of the lecture slides,

$$
\begin{aligned}
\epsilon_{2, \text { predicted }}=0.987 m_{s t, 2}^{-0.183} & =0.987(115,000)^{-0.183}=0.1170 \\
\epsilon_{1, \text { predicted }}=1.6062 m_{s t, 1}^{-0.275} & =1.6062(483,700)^{-0.275}=0.0439
\end{aligned}
$$

(4) Using ϵ_{2} and ϵ_{2} from the previous problem, and keeping the total masses of each of the stages constant, calculate the new values for inert and propellant masses, and then calculate the Δv for each stage. List $\Delta v_{t o t a l}, \Delta v_{1}, \Delta v_{2}, m_{0}, m_{p r, 1}, m_{i n, 1}, m_{p r, 2}$, and $m_{i n, 2}$

$$
\begin{aligned}
m_{i n, 2}= & \epsilon_{2} m_{s t, 2}=0.1170(115,000)=13,460 ; \\
m_{i n, 1}= & \epsilon_{1} m_{\text {st }, 1}=0.0439(483,700)=21,240 ; m_{\text {pr }, 2}=m_{s t, 2}=m_{i n, 2}=115,000-11,200=101,500 \mathrm{~kg} \\
& \text { It was specified that the overall stage masses do no change, so }
\end{aligned}
$$

$$
\begin{aligned}
r_{2} & =\frac{m_{i n, 2}+m_{p l}}{m_{s t, 2}+m_{p l}}=\frac{11200+25000}{1115000+25000}=0.2724 \\
r_{1} & =\frac{m_{i n, 1}+m_{p l}}{m_{s t, 1}+m_{p l}}=\frac{21240+25000}{483700+25000}=0.2585
\end{aligned}
$$

$$
\Delta v_{1}=-v_{e, 1} \ln r_{1}=-4500 \ln 0.2585=5141 \frac{\mathrm{~m}}{\mathrm{sec}} ; \quad \Delta v_{2}=-v_{e, 2} \ln r_{2}=-3800 \ln 0.2747=5815 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

$$
\Delta v_{\text {total }}=\Delta v_{1}+\Delta v_{2}=5141+5815=10,955 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

Out of curiosity, use these new parameters to calculate the values of δ_{1} and δ_{2} that correspond to these predicted values of ϵ_{1} and ϵ_{2} to find $\delta_{2, \text { new }}=0.0961$ and $\delta_{1, \text { new }}=0.0341$
(5) You will find that the total Δv is changed somewhat due to the revised mass numbers. Using the vehicle configuration you derived in (4), what is the new payload capacity to lunar transfer orbit at $\Delta v_{\text {total }}=11,000 \mathrm{~m} / \mathrm{sec}$?

Using the new mass numbers derived above, use the same set-up as in (2) to solve for payload mass that results in a $\Delta v_{\text {total }}$ of $11,000 \mathrm{~m} / \mathrm{sec}$. This turns out to be $24,568 \mathrm{~kg}$

Be aware that when you changed from using δ to ϵ in (3), you were no longer working with an optimal solution. The next step after (5) would be to iterate the entire process to find the new optimum Δv distribution with the new mass values. This will be considerably more work, and I'm not going to ask you to do it in this homework. You will, however, be doing it as teams in the first term project.

