Systems Analysis

- Lecture #03 September 5, 2023
- Rigorous decision making
- Structure of systems analysis
- Objective functions
- Trade studies
- Modeling
- Parametric design
- Decision matrices
- Analytical Hierarchy Process

© 2023 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

ENAE 483/788D – Principles of Space Systems Design

Analytical Design

• Rigorously investigating options to arrive at the most appropriate choices Modeling - Parametric analysis Trade studies Sensitivity analysis • Ties into fields of decision analysis, optimization, probability

2

Design Reference Mission(s)

- timeline, or combination thereof • Greater degree of detail where needed (e.g., surface operations)
 - early in development cycle

• Description of canonical mission(s) for use in design processes • Could take the form of a narrative, storyboard, pictogram,

3

• Created by eventual users of the system ("stakeholders") very

Requirements Document

- The "bible" of the design and development process Design Reference Mission
- of detail
- May be subject to change as state of knowledge grows
- Critical tool for maintaining program budgets

4

• Lists (clearly, unambiguously, numerically) what is required to successfully complete the program which culminates in the

• Requirements "flow-down" results in successively finer levels

Akin's Laws of Spacecraft Design - #13

Design is based on requirements. There's no justification for designing something one bit "better" than the requirements dictate.

5

Space Systems Architecture

- perform DRM
 - configuration decisions

6

• Description of physical hardware, processes, and operations to

• Term is used widely (e.g., "software architecture", "mission architecture", "planning architecture"), but refers to basic

Generally result of significant trade studies to compare options

Making Good Decisions

• Define "good": does it best perform the mission? • Define "mission": what does it have to do? • Define "best": what is the critical figure of merit? • Define "figure of merit": how do we measure how well it meets the requirements? • Define "requirements": what does it need to be able to do? • Define "able": how does it mean to "meet" a requirement? • Define "meet": are there extra points for exceeding?

7

Buying a New Car

- Possible figures of merit - Initial purchase price - Life cycle cost Reliability - Payload - Environmental impacts – Safety - Maintainability / reliability
 - UNIVERSITY OF MARYLAND

• Design Reference Mission: drive 12,000 miles/year for 15 years

Systems Analysis ENAE 483/788D – Principles of Space Systems Design

8

Buying a New Car

Honda Fit

Can it accomplish the DRM?
Does it meet the requirements? (Oops, we didn't do a requirements document... *yet*!)
Is it the best solution to the problem that requires a new car?

9

Buying a New Car

10

Honda Fit best fit to the requirements – this is a trade study UNIVERSITY OF ARYLAND

Toyota RAV4 Chevy Bolt • You can't make an informed choice if you only have one option • You must compete at least two options, and select the better/

Overview of the Design Process

Program Objectives System Requirements

Vehicle-level Estimation (based on a few parameters from prior art)

Increasing complexity

Increasing accuracy

Decreasing ability to comprehend the "big picture"

Basic Axiom: Relative rankings between competing systems will remain consistent from level to level

System-level Estimation (system parameters based on prior experience)

11

System-level Design (based on disciplineoriented analysis)

Course Syllabus/Team Projects ENAE 483/788D – Principles of Space Systems Design

Decision Criteria

- don't
 - process
 - cost

• Requirements are "pass/fail" – either you meet them or you

 Each design process will have an "Objective Function" – a particular figure of merit which is optimized in the trade study

• Examples: minimize inert mass, maximize payload, minimize

12

What's the Right Objective Function?

Was the DRM Correct and Appropriate? • 1st iteration: 12,000 mi/yr (U.S. average)

- 2nd iteration:
- $-35 \text{ mi}/\text{day} \ge 250 \text{ working days} = 8750 \text{ mi}/\text{yr}$ - 300 mi/month chasing balloons = 3600 mi/yr - 2000 mi/yr in road trip - Total mileage 14,350 mi/yr • Requirements include

14

– Balloon launches include carrying 4 helium tanks \Rightarrow need 5ft of cargo

Car Decision, Revisited

- Fit doesn't have the cargo space for balloon launches • \Longrightarrow Choice defaults to RAV4 as only option that meets requirements
- Next revisit: mixed fleet solution RAV4 for long range trips and cargo - Bolt or Fit for routine local transportation

Bolt doesn't have the range for balloon launches or road trips

15

– Assumes purchase or life cycle cost is *not* the objective function!

Summary of the Trade Study Process

- which is maximally beneficial to the decision criteria periodically to ensure the solution made is still the most favorable
 - subsystems, systems, vehicles, architectures...)

• Always develop at least two options to satisfy requirements • Compare options on the basis of an objective function to find • Revisit components (DRM, requirements, objective function)

16

• This works on every level of the design process (components,

Trade Study – Comparison of Life Support Options

17

ENAE 483/788D – Principles of Space Systems Design

Trade Study – Variation of LV Design Parameters

18

ENAE 483/788D – Principles of Space Systems Design

Modeling for Design Parameters

 $\pi r^2 P = 2\pi r t \theta$ $rP = 2t\theta$ $t = \frac{rP}{2\sigma} \qquad V_{tank} = 4\pi r^2 t$ $m_{tank} = V_{tank}\rho_t = 4\rho_t \pi r^2 \frac{rP}{2\sigma} = 2\rho_t \pi r^2 \frac{rP}{\sigma}$ $m_{gas} = V_{gas}\rho_g = \frac{4}{3}\pi r^3\rho_g$ $m_{tank} = \frac{2\rho_t \pi r^3 P}{\sigma} = \frac{3}{3} \rho_t P$ However... $m_{gas} = 4/3 \rho_g \pi r^3$ σ ρ_g **Systems Analysis**

mgas

For a spherical tank, the ratio between optimized tank mass and pressurized gas mass is invariant with tank pressure

20

Modeling for Design Parameters

 $P = \rho_g RT \implies \frac{\rho_g}{\rho_{g,ref}} = \frac{P}{P_{ref}} \implies \rho_g = P \frac{\rho_{g,ref}}{P_{ref}}$

$\frac{m_{tank}}{m_{gas}} = \frac{3 \rho_t P}{2 \rho_g \sigma} = \frac{3 \rho_t P_{ref} P}{2 P \rho_{g,ref} \sigma} = \frac{3 \rho_t P_{ref}}{2 \rho_{g,ref} \sigma}$

Decision Analysis Tools

- A number of different approaches exist, e.g. - Decision Matrices (such as Pugh Method)
 - Quality Function Deployment
 - Six Sigma
 - clear analytical metric exists "quantifying opinions"

21

- Analytic Hierarchy Process (details following) • Generally provide a way to make decisions where no single • Allows use of subjective rankings between criteria to create
- numerical weightings
- Not a substitute for rigorous analysis!

UNIVERSITY OF MARYLAND

ENAE 483/788D – Principles of Space Systems Design

Pugh Matrix

Decision Matrix Using Real Numbers

23

This is bad mathematics

ENAE 483/788D – Principles of Space Systems Design

Decision Matrix Using Normalized Numbers

Criterion	Weight	Fit	Bolt	RAV4	
Purchase 0.3 0.3		0.4	0.8	1	
Price/yr	0.4	1	0.174	0.535	
CO2 emissions	0.3	1	0.549	0.714	
Totals	1	0.820	0.474	0.728	

24

Conclusion on Decision Matrices

should NOT be presented or used as such • Use of quantitative values in a decision matrix CAN be used to evaluate given multiple different decision criteria • Quantitative data and weights should be normalized to prevent inadvertent weighting bias across criteria

• Use of the Pugh method (arbitrarily assigning numbers with implicit weighting of subjective evaluations) may produce a "reasonable" answer, but is NOT meaningful analysis and

Dealing with Opinions

- into account
- Assessment of human factors or operational protocols - Impact of prior experience among potential options

• There will be times when you have to take human opinions

26

• The goal is to collect and use the data in a rigorous manner • The need is to quantify the strength of the opinions spread

• One valuable approach: the Analytical Hierarchy Process

Analytical Hierarchy Process (AHP) • Considering a range of options, e.g., ice cream – Vanilla (V) – Peach (P) – Strawberry (S) - Chocolate (C) • Could ask for a rank ordering, e.g. (1) vanilla, (2) strawberry, (3) peach, (4) chocolate - but that doesn't give any information on how firm the rankings are • Use pairwise comparisons to get quantitative evaluation of the degree of preference UNIVERSITY OF MARYLAND **Systems Analysis ENAE 483/788D – Principles of Space Systems Design** 27

Pairwise Comparisons

- Ideally, do exhaustive combinations
 - Vanilla >> chocolate (strongly agree)
 - Vanilla >> peach (agree)
 - Vanilla >> strawberry (agree)
 - Peach >> chocolate (strongly agree)
 - Peach >> strawberry (disagree)
 - Strawberry >> chocolate (strongly agree)
- e.g., N=20 requires 190 pairings!
- Can use hierarchies of subgroupings to keep it manageable UNIVERSITY OF MARYLAND

Systems Analysis ENAE 483/788D – Principles of Space Systems Design 28

• Number of required pairings out of N options is (N)(N-1)/2 -

Evaluation Metric • Create a numerical scaling function, e.g. – "strongly agree" = 9 - "agree" = 3- "neither agree nor disagree" = 1- "disagree" = 1/3- "strongly disagree" = 1/9• Numerical rankings are arbitrary, but often follow geometric progressions - 9, 3, 1, 1/3, 1/9 - 8, 4, 2, 1, 1/2, 1/4, 1/8 UNIVERSITY OF 29

Evaluation Matrix

• Fill out matrix preferring rows over columns

	С	S	Ρ	V
С				
S	9			
Ρ	9	1/3		
V	9	3	3	

30

Note: if you have multiple people performing an AHP evaluation, populate a matrix like this for each of them, then add the matrices together and use that summary matrix as you proceed with the rest of the analysis.

ENAE 483/788D – Principles of Space Systems Design

Evaluation Matrix

• Fill out matrix preferring rows over columns • Fill opposite diagonal with reciprocals

	С	S	Ρ	V			С	S	Ρ	V
С						С		1/9	1/9	1/9
S	9				\Rightarrow	S	9		3	1/3
Ρ	9	1/3	0			Ρ	9	1/3		1/3
V	9	3	3			V	9	3	3	

Systems Analysis

ENAE 483/788D – Principles of Space Systems Design

Normalization of Matrix Elements

Normalize columns by column sums

	С	S	Ρ	V
С		1/9	1/9	1/9
S	9	112	3	1/3
P	9	1/3		1/3
V	9	3	3	

27 3.44 6.11 0.78

	С	S	Ρ	V
С		0.032	0.018	0.143
S	0.333		0.491	0.429
Ρ	0.333	0.097		0.429
V	0.333	0.871	0.491	

Evaluatio

• Average

on of Hierarchy Among Options									
e across the populated row elements									
		С	S	Ρ	V	\Downarrow These rankings should sum to 1.			
A SAN	С		0.032	0.018	0.143	0.048			
Y . 1 .	S	0.333		0.491	0.429	0.313			
1 Marine	Ρ	0.333	0.097		0.429	0.215			
	V	0.333	0.871	0.491		0.424 ⇐ Top ranking			

33

Akin's Laws of Spacecraft Design - #38

Capabilities drive requirements, regardless of what the systems engineering textbooks say.

34

Term Project 1

• Everyone will be assigned to a team of 4-5 people • The project will be to design an Earth launch vehicle - Details will be provided shortly - Each team will be required to submit detailed CAD images - Report will be in the form of presentation slides - Grad and hypersonic teams will go into greater depth and continue project throughout this term UNIVERSITY OF MARYLAND

- Grad students and hypersonic capstone will each form their own team

- Focus will be on systems engineering, trade studies, and cost analysis

Team Project 2

- term
- Based on feedback from first day survey, projects will be – Long-Duration Mars Simulation at the Moon (RASC-AL) - Sustained Lunar Evolution (RASC-AL) Large-Scale Lunar Crater Prospector (RASCAL) - Collaborative Robotic Lunar Rovers (GSFC) • You will be assigned to a project and a specialty group, based on your preferences (survey coming shortly) UNIVERSITY OF MARYLAND

36

• Team project 2 will be to start work on 484 projects for next

Specialty Teams (Matrix Organization)

 Systems Analysis and Engineering Mission Planning and Analysis • Crew Systems (as appropriate) Loads, Structures, and Mechanisms Power, Propulsion, and Thermal Avionics, Flight Software, and Simulation • Additional assignment: Hardware team (as appropriate)

37

