Systems Analysis

- Lecture \#03 - September 5, 2023
- Rigorous decision making
- Structure of systems analysis
- Objective functions
- Trade studies
- Modeling
- Parametric design
- Decision matrices
- Analytical Hierarchy Process

Analytical Design

- Rigorously investigating options to arrive at the most appropriate choices
- Modeling
- Parametric analysis
- Trade studies
- Sensitivity analysis
- Ties into fields of decision analysis, optimization, probability

Design Reference Mission(s)

- Description of canonical mission(s) for use in design processes
- Could take the form of a narrative, storyboard, pictogram, timeline, or combination thereof
- Greater degree of detail where needed (e.g., surface operations)
- Created by eventual users of the system ("stakeholders") very early in development cycle

Requirements Document

- The "bible" of the design and development process
- Lists (clearly, unambiguously, numerically) what is required to successfully complete the program which culminates in the Design Reference Mission
- Requirements "flow-down" results in successively finer levels of detail
- May be subject to change as state of knowledge grows
- Critical tool for maintaining program budgets

Akin's Laws of Spacecraft Design - \#13

> Design is based on requirements. There's no justification for designing something one bit "better" than the requirements dictate.

Space Systems Architecture

- Description of physical hardware, processes, and operations to perform DRM
- Term is used widely (e.g., "software architecture", "mission architecture", "planning architecture"), but refers to basic configuration decisions
- Generally result of significant trade studies to compare options

Making Good Decisions

- Define "good": does it best perform the mission?
- Define "mission": what does it have to do?
- Define "best": what is the critical figure of merit?
- Define "figure of merit": how do we measure how well it meets the requirements?
- Define "requirements": what does it need to be able to do?
- Define "able": how does it mean to "meet" a requirement?
- Define "meet": are there extra points for exceeding?

Buying a New Car

- Design Reference Mission: drive 12,000 miles / year for 15 years
- Possible figures of merit
- Initial purchase price
- Life cycle cost
- Reliability
- Payload
- Environmental impacts
- Safety
- Maintainability / reliability

Buying a New Car

Honda Fit

- Can it accomplish the DRM?
- Does it meet the requirements?
(Oops, we didn't do a requirements document... yet!)
- Is it the best solution to the problem that requires a new car?

Buying a New Car

Honda Fit

Chevy Bolt

Toyota RAV4

- You can't make an informed choice if you only have one option
- You must compete at least two options, and select the better/ best fit to the requirements - this is a trade study

Overview of the Design Process

Decision Criteria

- Requirements are "pass / fail" - either you meet them or you don't
- Each design process will have an "Objective Function" - a particular figure of merit which is optimized in the trade study process
- Examples: minimize inert mass, maximize payload, minimize cost

What's the Right Objective Function?

Was the DRM Correct and Appropriate?

- 1st iteration: $12,000 \mathrm{mi} / \mathrm{yr}$ (U.S. average)
- 2nd iteration:
- 35 mi / day x 250 working days $=8750 \mathrm{mi} / \mathrm{yr}$
- $300 \mathrm{mi} /$ month chasing balloons $=3600 \mathrm{mi} / \mathrm{yr}$
- 2000 mi / yr in road trip
- Total mileage 14,350 mi / yr
- Requirements include
- Balloon launches include carrying 4 helium tanks \Rightarrow need 5 ft of cargo

Car Decision, Revisited

- Bolt doesn't have the range for balloon launches or road trips
- Fit doesn't have the cargo space for balloon launches
- \Longrightarrow Choice defaults to RAV4 as only option that meets requirements
- Next revisit: mixed fleet solution
- RAV4 for long range trips and cargo
- Bolt or Fit for routine local transportation
- Assumes purchase or life cycle cost is not the objective function!

Summary of the Trade Study Process

- Always develop at least two options to satisfy requirements
- Compare options on the basis of an objective function to find which is maximally beneficial to the decision criteria
- Revisit components (DRM, requirements, objective function) periodically to ensure the solution made is still the most favorable
- This works on every level of the design process (components, subsystems, systems, vehicles, architectures...)

Trade Study - Comparison of Life Support Options

Trade Study - Variation of LV Design Parameters

Modeling for Design Parameters

$$
\begin{gathered}
\pi r^{2} P=2 \pi r t \theta \quad r P=2 t \theta \\
t=\frac{r P}{2 \sigma} \quad V_{\text {tank }}=4 \pi r^{2} t \\
m_{\text {tank }}=V_{\text {tank }} \rho_{t}=4 \rho_{t} \pi r^{2} \frac{r P}{2 \sigma}=2 \rho_{t} \pi r^{2} \frac{r P}{\sigma} \\
m_{\text {gas }}=V_{\text {gas }} \rho_{g}=\frac{4}{3} \pi r^{3} \rho_{g} \\
\frac{m_{\text {tank }}}{m_{\text {gas }}}=\frac{2 \rho_{t} \pi r^{3} P / \sigma}{4 / 3 \rho_{g} \pi r^{3}}=\frac{3}{2} \frac{\rho_{t}}{\rho_{g}} \frac{P}{\sigma} \quad \text { However } \ldots
\end{gathered}
$$

Modeling for Design Parameters

For a spherical tank, the ratio between optimized tank mass and pressurized gas mass is invariant with tank pressure

Decision Analysis Tools

- A number of different approaches exist, e.g.
- Decision Matrices (such as Pugh Method)
- Quality Function Deployment
- Six Sigma
- Analytic Hierarchy Process (details following)
- Generally provide a way to make decisions where no single clear analytical metric exists - "quantifying opinions"
- Allows use of subjective rankings between criteria to create numerical weightings
- Not a substitute for rigorous analysis!

Pugh Matrix

Decision Matrix Using Real Numbers

Decision Matrix Using Normalized Numbers

Criterion	Weight	Fit	Bolt	RAV4
Purchase price	0.3	0.4	0.8	1
Price/yr	0.4	1	0.174	0.535
CO2 emissions	0.3	1	0.549	0.714
Totals	1	0.820	0.474	0.728

Conclusion on Decision Matrices

- Use of the Pugh method (arbitrarily assigning numbers with implicit weighting of subjective evaluations) may produce a "reasonable" answer, but is NOT meaningful analysis and should NOT be presented or used as such
- Use of quantitative values in a decision matrix CAN be used to evaluate given multiple different decision criteria
- Quantitative data and weights should be normalized to prevent inadvertent weighting bias across criteria

Dealing with Opinions

- There will be times when you have to take human opinions into account
- Assessment of human factors or operational protocols
- Impact of prior experience
- The goal is to collect and use the data in a rigorous manner
- The need is to quantify the strength of the opinions spread among potential options
- One valuable approach: the Analytical Hierarchy Process

Analytical Hierarchy Process (AHP)

- Considering a range of options, e.g., ice cream
- Vanilla (V)
- Peach (P)
- Strawberry (S)
- Chocolate (C)
- Could ask for a rank ordering, e.g. (1) vanilla, (2) strawberry, (3) peach, (4) chocolate - but that doesn't give any information on how firm the rankings are
- Use pairwise comparisons to get quantitative evaluation of the degree of preference

Pairwise Comparisons

- Ideally, do exhaustive combinations
- Vanilla >> chocolate (strongly agree)
- Vanilla >> peach (agree)
- Vanilla >> strawberry (agree)
- Peach >> chocolate (strongly agree)
- Peach >> strawberry (disagree)
- Strawberry >> chocolate (strongly agree)
- Number of required pairings out of N options is $(\mathrm{N})(\mathrm{N}-1) / 2$ e.g., $\mathrm{N}=20$ requires 190 pairings!
- Can use hierarchies of subgroupings to keep it manageable

Evaluation Metric

- Create a numerical scaling function, e.g.
- "strongly agree" = 9
- "agree" = 3
- "neither agree nor disagree" = 1
- "disagree" $=1 / 3$
- "strongly disagree" $=1 / 9$
- Numerical rankings are arbitrary, but often follow geometric progressions
- $9,3,1,1 / 3,1 / 9$
- $8,4,2,1,1 / 2,1 / 4,1 / 8$

Evaluation Matrix

- Fill out matrix preferring rows over columns

	C	S	P	V
C				
S	9			
P	9	$1 / 3$		
V	9	3	3	

Note: if you have multiple people performing an AHP evaluation, populate a matrix like this for each of them, then add the matrices together and use that summary matrix as you proceed with the rest of the analysis.

Evaluation Matrix

- Fill out matrix preferring rows over columns
- Fill opposite diagonal with reciprocals

	C	S	P	V
C				
S	9			
P	9	$1 / 3$		
V	9	3	3	

	C	S	P	V
C		$1 / 9$	$1 / 9$	$1 / 9$
S	9		3	$1 / 3$
P	9	$1 / 3$		$1 / 3$
V	9	3	3	

Normalization of Matrix Elements

- Normalize columns by column sums

	C	S	P	V
C		$1 / 9$	$1 / 9$	$1 / 9$
S	9		3	$1 / 3$
P	9	$1 / 3$		$1 / 3$
V	9	3	3	
27				

\Longrightarrow| | C | S | P | V |
| :---: | :---: | :---: | :---: | :---: |
| C | | 0.032 | 0.018 | 0.143 |
| S | 0.333 | | 0.491 | 0.429 |
| P | 0.333 | 0.097 | | 0.429 |
| V | 0.333 | 0.871 | 0.491 | |

Evaluation of Hierarchy Among Options

- Average across the populated row elements

	C	S	P	V	\Downarrow These rankings should sum to 1.0
C		0.032	0.018	0.143	0.048
S	0.333		0.491	0.429	0.313
P	0.333	0.097		0.429	0.215
V	0.333	0.871	0.491		$0.424 \Leftarrow$ Top ranking

Akin's Laws of Spacecraft Design - \#38

Capabilities drive requirements, regardless of what the systems engineering textbooks

 say.
Term Project 1

- Everyone will be assigned to a team of $4-5$ people
- Grad students and hypersonic capstone will each form their own team
- The project will be to design an Earth launch vehicle
- Details will be provided shortly
- Focus will be on systems engineering, trade studies, and cost analysis
- Each team will be required to submit detailed CAD images
- Report will be in the form of presentation slides
- Grad and hypersonic teams will go into greater depth and continue project throughout this term

Team Project 2

- Team project 2 will be to start work on 484 projects for next term
- Based on feedback from first day survey, projects will be
- Long-Duration Mars Simulation at the Moon (RASC-AL)
- Sustained Lunar Evolution (RASC-AL)
- Large-Scale Lunar Crater Prospector (RASCAL)
- Collaborative Robotic Lunar Rovers (GSFC)
- You will be assigned to a project and a specialty group, based on your preferences (survey coming shortly)

Specialty Teams (Matrix Organization)

- Systems Analysis and Engineering
- Mission Planning and Analysis
- Crew Systems (as appropriate)
- Loads, Structures, and Mechanisms
- Power, Propulsion, and Thermal
- Avionics, Flight Software, and Simulation
- Additional assignment: Hardware team (as appropriate)

