Mass Estimating Relations

- Lecture \#6 - September 14, 2023
- Review of iterative design approach
- Mass Estimating Relations (MERs)
- Sample vehicle design analysis
- Picking projects and specialties for ENAE 484

Akin's Laws of Spacecraft Design - \#3

> Design is an iterative process. The necessary number of iterations is one more than the number you have currently done. This is true at any point in time.

Overview of the Design Process

Vehicle-Level Prelim Design - 1st Pass

- Single Stage to Orbit (SSTO) vehicle
- $\Delta \mathrm{V}=9200 \mathrm{~m} / \mathrm{sec}$

$$
r=e^{-\frac{\Delta V}{V e}}=0.1127
$$

- 5000 kg payload
- LOX/LH2 propellants

$$
\lambda=r-\delta=0.0327
$$

- Isp=430 sec (Ve=4214 m/sec)

$$
\begin{array}{r}
M_{o}=\frac{M_{\ell}}{\lambda}=153,000 \mathrm{~kg} \\
M_{i}=\delta M_{o}=12,240 \mathrm{~kg} \\
M_{p}=M_{o}(1-r)=135,800 \mathrm{~kg}
\end{array}
$$

System-Level Estimation

- Start with propellant tanks (biggest part)
- LOX/LH2 engines generally run at mixture ratio of 6:1 (by weight)
- LH2: 19,390 kg
- LOX: 116,400 kg
- Propellant densities

$$
\rho_{L O X}=1140 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \rho_{L H_{2}}=71 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

Propellant Tank Regression Data

Propellant Tank MERs (Volume)

- LH_{2} tanks

$$
M_{L H_{2} \text { Tank }}\langle k g\rangle=9.09 V_{L H_{2}}\left\langle m^{3}\right\rangle
$$

- All other tanks (e.g., LOX, RP-1, LCH4, hypergols)

$$
M_{\text {Tank }}\langle k g\rangle=12.16 V_{\text {prop }}\left\langle m^{3}\right\rangle
$$

Propellant Tank MERs (Mass)

- LH_{2} tanks

$$
\rho_{L H_{2}}=71 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \Longrightarrow M_{L H_{2} \text { Tank }}\langle k g\rangle=0.128 M_{L H_{2}}\langle k g\rangle
$$

- LOX tanks

$$
\rho_{L O X}=1140 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \Longrightarrow M_{\text {LOX Tank }}\langle k g\rangle=0.0107 M_{\text {LOX }}\langle k g\rangle
$$

- RP-1 tanks

$$
\begin{aligned}
& \text { tanks } \\
& \rho_{R P 1}=820 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \Longrightarrow M_{R P 1 \text { Tank }}\langle k g\rangle=0.0148 M_{R P 1}\langle k g\rangle, ~
\end{aligned}
$$

- LCH_{4} tanks

$$
\rho_{L C H_{4}}=423 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \Longrightarrow M_{L C H_{4} \text { Tank }}\langle k g\rangle=0.0287 M_{L C H_{4}}\langle k g\rangle
$$

Cryogenic Insulation MERs

$$
\begin{aligned}
& M_{L_{2} \text { Insulation }}\langle k g\rangle=2.88 A_{\text {tank }}\left\langle\frac{\mathrm{kg}}{\mathrm{~m}^{2}}\right\rangle \\
& M_{\text {LOXILCH }_{4} \text { Insulation }}\langle k g\rangle=1.123 A_{\text {tank }}\left\langle\frac{\mathrm{kg}}{\mathrm{~m}^{2}}\right\rangle
\end{aligned}
$$

LOX Tank Design

- Mass of LOX=116,400 kg

$$
M_{L O X ~ T a n k}=0.0107(116,400)=1245 \mathrm{~kg}
$$

- Need area to find LOX tank insulation mass - assume a sphere

$$
\begin{gathered}
V_{L O X \text { Tank }}=\frac{M_{L O X}}{\rho_{L O X}}=102.1 \mathrm{~m}^{3} \\
r_{\text {LOX Tank }}=\left(\frac{V_{L O X}}{4 \pi / 3}\right)^{\frac{1}{3}}=2.90 \mathrm{~m} \\
A_{L O X \text { Tank }}=4 \pi r^{2}=105.6 \mathrm{~m}^{2} \\
M_{\text {LOX Insulation }}=1.123\left\langle\frac{\mathrm{~kg}}{\mathrm{~m}^{2}}\right\rangle\left(105.6\left\langle\mathrm{~m}^{2}\right\rangle\right)=119 \mathrm{~kg}
\end{gathered}
$$

LH_{2} Tank Design

- Mass of $\mathrm{LH}_{2}=19,390 \mathrm{~kg}$

$$
M_{L H_{2} \operatorname{Tank}}\langle k g\rangle=0.128(19,390)=2482 k g
$$

- Again, assume LH_{2} tank is spherical

$$
\begin{gathered}
V_{L H_{2} T a n k}=\frac{M_{L H_{2}}}{\rho_{L H_{2}}}=273.1 \mathrm{~m}^{3} \\
r_{L H_{2} \text { Tank }}=\left(\frac{V_{L H_{2}}}{4 \pi / 3}\right)^{\frac{1}{3}}=4.02 \mathrm{~m} \\
A_{L H_{2} \text { Tank }}=4 \pi r^{2}=203.6 \mathrm{~m}^{2} \\
M_{L H_{2} \text { Insulation }}=2.88\left\langle\frac{\mathrm{~kg}}{\mathrm{~m}^{2}}\right\rangle\left(203.6\left\langle\mathrm{~m}^{2}\right\rangle\right)=586 \mathrm{~kg}
\end{gathered}
$$

Current Design Sketch

- Masses
- LOX Tank 1245 kg
- LOX Tank Insulation 119 kg
- LH_{2} Tank 2482 kg
- LH_{2} Tank Insulation 586 kg

High-Pressure Gas Tanks

- COPV Tanks
- Titanium Tanks
-Linear (COPV Tanks) - Linear (Titanium Tanks)

Pressurized Gas Tank MERs

- COPV (Composite Overwrapped Pressure Vessel)

$$
M_{C O P V \operatorname{Tank}}(\mathrm{~kg})=115.3 V_{\text {contents }}\left(m^{3}\right)+3
$$

- Titanium tank

$$
M_{\text {Ti Tank }}(k g)=299.8 V_{\text {contents }}\left(m^{3}\right)+2
$$

Smaller Storable Liquids Tanks

Mass Estimating Relations
ENAE 483/788D - Principles of Space Systems Design

Small Liquid Tankage MERs

- Bare metal tanks

$$
M_{\text {Bare Tank }}(\mathrm{kg})=27.34 V_{\text {contents }}\left(m^{3}\right)+2
$$

- Tanks with propellant management devices

$$
M_{P M D ~ T a n k}(k g)=34.69 V_{\text {contents }}\left(m^{3}\right)+3
$$

- Titanium tanks with positive expulsion bladders

$$
M_{\text {Diaphragm Tank }}(k g)=71.17 V_{\text {contents }}\left(m^{3}\right)+3
$$

Minimum Cost Lunar Architecture

Orbital Maneuvering Stage (OMS)

- Gross mass 6950 kg
- Inert mass 695 kg
- Propellant mass 6255 kg
- Mixture ratio $\mathrm{N}_{2} \mathrm{O}_{4} / \mathrm{UDMH}=2.0$ (by mass)
- $\mathrm{N}_{2} \mathrm{O}_{4}$ tank
- Mass $=4170 \mathrm{~kg}$
- Density $=1450 \mathrm{~kg} / \mathrm{m}^{3}$
- Volume $=2.876 \mathrm{~m}^{3}$
- UDMH tank
- Mass $=2085 \mathrm{~kg}$
- Density $=793 \mathrm{~kg} / \mathrm{m}^{3}$
- Volume $=2.629 \mathrm{~m}^{3}$

$\mathbf{N}_{2} \mathrm{O}_{4}$ Tank Sizing

- Need total $\mathrm{N}_{2} \mathrm{O}_{4}$ volume $=2.876 \mathrm{~m}^{3}$
- Single PMD tank
- Radius $=0.882 \mathrm{~m}$
- Mass $=102.8 \mathrm{~kg}$
- Dual PMD tanks
- Radius $=0.700 \mathrm{~m}$
- Mass $=52.9 \mathrm{~kg}(x 2=105.8 \mathrm{~kg})$
- Triple PMD tanks
- Radius $=0.612 \mathrm{~m}$
- Mass $=36.3 \mathrm{~kg}(x 3=108.9 \mathrm{~kg})$

Apollo LM Ascent Tank Configurations

LM Ascent Stage Final Tank Configuration

Mass Estimating Relations MARYLAND

Other Structural MERs

- Fairings and shrouds

$$
M_{\text {fairing }}\langle k g\rangle=4.95\left(A_{\text {fairing }}\left\langle m^{2}\right\rangle\right)^{1.15}
$$

- Avionics

$$
M_{\text {avionics }}\langle k g\rangle=10\left(M_{o}\langle k g\rangle\right)^{0.361}
$$

- Wiring

$$
M_{\text {wiring }}\langle k g\rangle=1.058 \sqrt{M_{o}\langle k g\rangle} \ell^{0.25}
$$

External Fairings - First Cut

- Masses
- LOX Tank 1245 kg
- LOX Tank Insulation 119 kg
- LH_{2} Tank 2482 kg
- LH_{2} Tank Insulation 586 kg

$$
\begin{gathered}
A_{\text {cone }}=\pi r \sqrt{r^{2}+h^{2}} \\
A_{\text {frustrum }}=\pi\left(r_{1}+r_{2}\right) \sqrt{\left(r_{1}-r_{2}\right)^{2}+h^{2}} \\
A_{\text {cylinder }}=2 \pi r h \quad \text { Aft Fairing/Boattail }
\end{gathered}
$$

External Fairings - First Cut

- Assumptions
- P/L fairing b 7 m
$-\mathrm{P} / \mathrm{L}$ fairing r 2.9 m
- I/T fairing h 7 m
- I/T fairing r_{1}
4.02 m
- I/T fairing r_{2} 2.9 m
- Aft fairing h 7 m
- Aft fairing r
7 m
2.9 m
7 m
4.02 m
2.9 m
7 m
4.02 m

Fairing Analysis

- Payload Fairing
- Area
$69.03 \mathrm{~m}^{2}$
- Mass 645 kg
- Intertank Fairing
- Area
$154.1 \mathrm{~m}^{2}$
- Mass 1624 kg
- Aft Fairing
- Area
$176.8 \mathrm{~m}^{2}$
- Mass

1902 kg

Avionics and Wiring Masses

- Avionics

$$
M_{\text {avionics }}\langle k g\rangle=10(153,000)^{0.361}=744 \mathrm{~kg}
$$

- Wiring

$$
M_{\text {wiring }}\langle k g\rangle=1.058 \sqrt{153,000}(21 \mathrm{~m})^{0.25}=886 \mathrm{~kg}
$$

Propulsion MERs

- Liquid Pump-Fed Rocket Engine Mass

$$
\begin{aligned}
& M_{\text {Rocket Engine }}(\mathrm{kg})=7.81 \times 10^{-4} T(N)+ \\
& 3.37 \times 10^{-5} T(N) \sqrt{\frac{A_{e}}{A_{t}}}+59
\end{aligned}
$$

- Solid Rocket Motor

$$
M_{\text {Motor Casing }}=0.135 M_{\text {propellants }}
$$

- Thrust Structure Mass

$$
M_{\text {Thrust Structure }}(\mathrm{kg})=2.55 \times 10^{-4} \mathrm{~T}(\mathrm{~N})
$$

Propulsion MERs (continued)

- Gimbal Mass

$$
M_{\text {Gimbals }}(k g)=237.8\left[\frac{T(N)}{P_{0}(P a)}\right]^{9375}
$$

- Gimbal Torque

$$
\tau_{\text {Gimbals }}(N \cdot m)=990,000\left[\frac{T(N)}{P_{0}(P a)}\right]^{1.25}
$$

Propulsion System Assumptions

- Initial T/mg ratio = 1.3
- Keeps final acceleration low with reasonable throttling
- Number of engines $=6$
- Positive acceleration worst-case after engine out

$$
\frac{5}{6}(1.3)=1.083>1
$$

- Chamber pressure $=1000 \mathrm{psi}=6897 \mathrm{kPa}$
- Typical for high-performance LOX/LH2 engines
- Expansion ratio $\mathrm{A}_{\mathrm{e}} / \mathrm{A}_{\mathrm{t}}=30$
- Compromise ratio with good vacuum performance

Propulsion Mass Estimates

- Rocket Engine Thrust (each)

$$
T(N)=\frac{m_{0} g(T / W)_{0}}{n_{\text {engines }}}=324,900 \mathrm{~N}
$$

- Rocket Engine Mass (each)

$$
\begin{aligned}
& M_{\text {Rocket Engine }}(\mathrm{kg})=7.81 \times 10^{-4}(324,900)+ \\
& 3.37 \times 10^{-5}(324,900) \sqrt{30}+59=373 \mathrm{~kg}
\end{aligned}
$$

- Thrust Structure Mass

$$
M_{\text {Thrust Structure }}(\mathrm{kg})=2.55 \times 10^{-4}(324,900)=82.8 \mathrm{~kg}
$$

First Pass Vehicle Configuration

Mass Summary - First Pass

Initial Inert Mass Estimate LOX Tank LH2 Tank
LOX Insulation
LH2 Insulation
Payload Fairing Intertank Fairing
Aft Fairing
Engines
Thrust Structure
Gimbals
Avionics
Wiring
Reserve
Total Inert Mass
UNIVERSITY OF
MARYLAND
$12,240 \mathrm{~kg}$
1245 kg
2482 kg
119 kg
586 kg 645 kg
1626 kg 1905 kg 2236 kg 497 kg 81 kg 744 kg 886 kg
$13,052 \mathrm{~kg}$

Modifications for Second Pass

- Keep all initial vehicle sizing parameters constant
- Pick vehicle diameter and make tanks cylindrical to fit
- Redo MER analysis

Mass Estimating Relations ENAE 483/788D - Principles of Space Systems Design

Effect of Vehicle Diameter on Mass Margin

Effect of Mass-Optimal Diameter Choice

- Mass-optimal vehicle has diameter $=1.814 \mathrm{~m}$
- Mass margin goes from -6.22% to $+33.1 \%$
- Vehicle length=155 m
- Length / diameter ratio=86 - approximately equivalent to piece of spaghetti
- No volume for six rocket engines in aft fairing
- Infeasible configuration

Effect of Diameter on Vehicle L/D

S-IC Barge Delivery (10m diameter)

S-IVB Air Transport (7m diameter)

Atlas/Delta Delivery System (4-5m diam)

SpaceX Falcon 9 Delivery (3.7 m diam)

Second Pass Vehicle Configuration

Mass Summary - Second Pass

Initial Inert Mass Estimate 12,240 kg12,240 kg

LOX Tank
LH2 Tank
LOX Insulation
LH2 Insulation
Payload Fairing
Intertank Fairing
Aft Fairing
Engines
Thrust Structure
Gimbals
Avionics
Wiring
Reserve
Total Inert Mass
UNIVERSITY OF
MARYLAND
$1245 \mathrm{~kg} \quad 1245 \mathrm{~kg}$
$2482 \mathrm{~kg} \quad 2482 \mathrm{~kg}$ $119 \mathrm{~kg} \quad 56 \mathrm{~kg}$ $586 \mathrm{~kg} \quad 145 \mathrm{~kg}$ $645 \mathrm{~kg} \quad 402 \mathrm{~kg}$ $1626 \mathrm{~kg} \quad 448 \mathrm{~kg}$ $1905 \mathrm{~kg} \quad 579 \mathrm{~kg}$ $2236 \mathrm{~kg} \quad 2236 \mathrm{~kg}$ $497 \mathrm{~kg} \quad 497 \mathrm{~kg}$ $81 \mathrm{~kg} \quad 81 \mathrm{~kg}$ $744 \mathrm{~kg} \quad 744 \mathrm{~kg}$ $886 \mathrm{~kg} \quad 1044 \mathrm{~kg}$
$13,052 \mathrm{~kg} \quad 9960 \mathrm{~kg}$

Modifications for Iteration 3

- Keep 4 m tank diameter
- Change initial assumption of δ iteratively, with resulting changes in m_{0} and m_{i}, to reach 30\% mass margin
- Modify diameter to keep $\mathrm{L} / \mathrm{D} \leq 10$ and iterate again for optimal initial mass estimate

Mass Estimating Relations

Vehicle-Level Prelim Design - 3rd Pass

- Single Stage to Orbit (SSTO) vehicle
- $\Delta \mathrm{V}=9200 \mathrm{~m} / \mathrm{sec}$
- 5000 kg payload

$$
r=e^{-\frac{\Delta V}{V e}}=0.1127
$$

- LOX/LH2 propellants

$$
\lambda=r-\delta=0.0294
$$

- Isp=430 sec
(Ve=4214 m/sec)

$$
M_{o}=\frac{M_{\ell}}{\lambda}=169,800 \mathrm{~kg}
$$

- $\delta=0.08323$

$$
M_{i}=\delta M_{o}=14,130 \mathrm{~kg}
$$

- Diameter=4.2 m
- L/D=9.7

$$
M_{p}=M_{o}(1-r)=150,700 \mathrm{~kg}
$$

Mass Summary - Third Pass

Initial Inert Mass Estimate12,240 kg12,240 kg 14, 130 kg

LOX Tank	1245 kg	1245 kg	1382 kg
LH2 Tank	2482 kg	2482 kg	2755 kg

LOX Insulation
LH2 Insulation
Payload Fairing Intertank Fairing Aft Fairing Engines
Thrust Structure
Gimbals
Avionics
Wiring
Reserve
Total Inert Mass
Design Margin
UNIVERSITY OF
MARYLAND

Mass Budgeting

Estimates Budgeted Margins

Initial Inert Mass Estimate $14,131 \mathrm{~kg} 14,131 \mathrm{~kg}$			
LOX Tank	1382 kg	1589 kg	207 kg
LH2 Tank	2755 kg	3168 kg	413 kg
LOX Insulation	62 kg	72 kg	9 kg
LH2 Insulation	160 kg	184 kg	24 kg
Payload Fairing	427 kg	491 kg	64 kg
Intertank Fairing	501 kg	576 kg	75 kg
Aft Fairing	626 kg	720 kg	94 kg
Engines	2443 kg	2809 kg	366 kg
Thrust Structure	552 kg	634 kg	83 kg
Gimbals	90 kg	103 kg	13 kg
Avionics	773 kg	889 kg	116 kg
Wiring	1101 kg	1267 kg	165 kg
Reserve	-	1630 kg	
Total Inert Mass	$10,870 \mathrm{~kg}$	$12,500 \mathrm{~kg}$	

Masses of Pressurized Systems

Spacecraft/Stations/Habitats

- Gross mass

$$
m_{G}<k g>=460 \mathrm{~V}<m^{3}>^{0.76}
$$

- Pressure hull mass

$$
m_{\text {hull }}<k g>=91.03 \mathrm{~V}<m^{3}>^{0.83}
$$

- Internal systems mass

$$
m_{\text {sys }}<k g>=366.3 \mathrm{~V}<m^{3}>^{0.74}
$$

Today's Tools

- Heuristic equations for estimating mass of vehicles at a component level
- Concept of mass margin as a design driver
- Budgeting of margin for future levels of design detail

References

- C. R. Glatt, WAATS - A Computer Program for Weights Analysis of Advanced Transportation Systems NASA CR-2420, September 1974.
- I. O. MacConochie and P. J. Klich, Techniques for the Determination of Mass Properties of Earth-to-Orbit Transportation Systems NASA TM-78661, June 1978.
- Willie Heineman, Jr., Fundamental Techniques of Weight Estimating and Forecasting for Advanced Manned Spacecraft and Space Stations NASA TN-D-6349, May 1971
- Willie Heineman, Jr., Mass Estimation and Forecasting for Aerospace Vehicles Based on Historical Data NASA JSC-26098, November 1994

2024 Project Themes

- Long-Duration Mars Simulation at the Moon (RASC-AL)
- Sustained Lunar Evolution (RASC-AL)
- Large-Scale Lunar Crater Prospector (RASCAL)
- Collaborative Robotic Lunar Rovers (GSFC)

Long-Duration Mars Simulation at the Moon

- Develop an architecture for a long-duration simulation of a Mars mission conducted at the Moon, e.g.
- 12-month microgravity stay in cislunar space with artificial comm delays representing a Mars transit hub starting NLT 2035
- Land on the Moon and perform a 30-day exploration mission
- Return to cislunar habitat and stay for 12 months before return to Earth
- Focus on habitats and transit vehicles to maximize fidelity of the Mars mission simulation; safety systems and abort options

Sustained Lunar Exploration Infrastructure

- Develop an architecture for evolving human presence on the Moon to expand available services and commodities
- Service architecture should provide logistics (propellant and crew consumables), power, comm, navigation, and cargo transport
- Initially for south polar region but expandable to rest of Moon
- Design systems and operations as commercial endeavor, including costs charged to users to make it economically viable
- South polar services available NLT 2035, provide growth plans to global support capabilities

Large-Scale Lunar Prospector

- Develop a concept for a prospecting rover that can operate for long durations in craters at the lunar south pole
- Should be capable of determining location, composition, and accessibility of water ice and other volatiles in permanently shadowed regions
- Capable of operating within the crater for up to a year with extended sorties into PSRs - focus on designing for extreme cold and darkness
- Describe concept of operations, configuration and subsystems, integration into rovers and transports
- Ready for initial operations NLT 2033

Collaborative Lunar Exploration Rovers (GSFC)

- Exploration of lunar permanently shadowed regions by a network of cooperative instruments
- Interactive design process with NASA Goddard scientists advising on science goals and instrument details
- Spatial and temporal measurements of volatiles in PSRs
- Measurement of regolith properties to understand weathering in PSRs
- Option for astronaut involvement in operations
- Hardware demonstrations using smaller hobby-level robotic hardware?

Matrix Organization

- Each project team will be divided into six specialty groups for ENAE484
- Systems Analysis/Systems Engineering (SASE)
- Mission Planning and Analysis (MPA)
- Loads, Structures, and Mechanisms (LSM)
- Power, Propulsion, and Thermal (PPT)
- Crew Systems (CS)
- Avionics, Flight Software, and Simulations (AFSS)

Systems Analysis/Systems Engineering

- Mission architecture
- Systems engineering
- Vehicle- and system-level trade studies
- Creation and tracking of budgets, particularly mass and cost
- Maintenance of canonical system configuration documents
- Cost estimation
- Risk analysis/ tracking
- Tracking of vehicle center of gravity and inertia matrix
- Advanced technology (e.g., robotics, EVA)

Mission Planning and Analysis

- Creation and maintenance of design reference mission(s) (DRM)
- Orbital mechanics and launch/entry trajectories
- Determination of operational mission objectives
- Concept of operations (CONOPS)
- Programmatic planning (sequence of missions)
- Science instrument/payload definition

Loads, Structures, and Mechanisms

- Identification and estimation of loads sources
- Structural design and analysis
- Selection of structural shapes and materials
- Stress modeling
- Deformation estimation
- Design optimization
- Design of mechanisms (e.g., docking / berthing ports, separation mechanisms, launch hold-downs, engine gimbals))
- Tracking of critical margins of safety

Power, Propulsion, and Thermal

- Electrical power generation
- Energy storage
- Power management and conditioning
- Primary propulsion (orbital maneuvering)
- Reaction control system (rotation/translation)
- Design of propellant storage and feed systems
- Thermal modeling and analysis
- Thermal control systems
- Power budgets

Crew Systems

- Internal layout
- Emergency egress systems
- Lighting and acoustics
- Window and viewing analysis
- Life support systems
- Air revitalization
- Water collection and regeneration
- Cabin thermal control
- Waste management
- Food and hygiene
- EVA accommodations

UNIVERSITY OF

Avionics, Flight Software, and Simulation

- Data management (flight computers)
- Networking
- Sensors
- Power distribution
- Guidance system
- Control systems, including attitude control
- Communications
- Robot control systems
- Software
- Data transmission budgets
- Simulations

Selecting Assignments for 484

- If you are a grad student or not taking ENAE 484 next term, ignore this slide
- Go to the course site on spacecraft.ssl.umd.edu and fill out the linked survey form
- Pairwise comparisons for term project
- Pairwise comparisons for specialty assignment
- Check on schedule conflicts
- I will go through an AHP process and then sort you into groups and specialties

In-Class Prompt

- Divide up into groups of 6-8 and discuss 484 projects and specialties
- If you have any questions, I'll be wandering around to answer them
- If you are grad students or hypersonic capstone students, meet in your own groups and discuss if we will win any more football games this season
- Look for the link to the selection survey which will be posted soon on the 483 splash page

