Term Project 1 and ENAE 484 Planning

- Lecture #12 October 5, 2022
- Team assignments for Term Project 1
- Project and specialty assignments for ENAE 484
- Expectations and milestones for ENAE 483

Teams for Team Project 1

<u>ream</u>	- /-/-/
Peter	Capozzoli

Luca Petrescu Saimah Siddiqui

Nikkole Merton

Team 2

Gustavo Lang Ryan Rex Lucas Armyn Alexander Teacu Cameron Patillo

Team 3

Florian Grader-Beck **Kuds Desta** Henri Roviera Chibueze Amos-Uhegbu

Team 4

Evan Ramm Karan Rai Nathaniel McIntyre Dmitri Kontchaev Stephen McGowan

Team 5

Joshua Gehres Caleb Hoffman Adam Lahr Julia Joseph

Team 6

Aroni Gupta Henry Reimert Charley Diaz Matias Calderon

Team 7

Jordan Kreh **Brian Glover** Devin McLenagan Chelsea May

Team 8

William Cook Nicholas Greco George Tang Isaac Foote

Team 9

Fletcher Smith Antonio Gallardo Olivia Fiore Payten Flanigan

Team 10

Jeremy Snyder Robert Fink Amir Moon Christian Foteping Wabo

Team 11

Ethan Tang Joseph Davis Sarah Pfau Sneha Sunilkumar

Team 12

Benjamin Loan **Zachary Zarus** Vincent Olindo Kaya Ozgun

Team 13

Ethan Goldberg Kruti Bhingradiya Athenais Culleron-Sun Justin Rahr

Team 14

Lars Knudsen Samuel Lin Sean Philips **Justin Dashiell**

Team 15

William Sheesley **Brook Fikre** Nicholas Louloudes Nalina Attanayake

Team 16

Jacob Frazee Elizabeth Quinn **Hunter Shiblie Daniel Corbett**

Team 17

Team 18 Saim Rizvi Justin Meyer **Justin Rhoads** William Rowe Gursimar Singh Jack Getz Ali Hassannia Lillian Spych

Team 19

Luke Brauch Gavin Bramble Alex Huang Gursajan Singh

Team 20

Andrew Stevens Alexander Hernandez **Elias Daniel** Nazifa Mahmud

Team 21

Eric Kim Adin Goldberg Joynob Kaoshar Zachary Argo

Team 22

Rachel Blum Raj Khismatrao Kathleen Ortel

Team Project 1

- Work in 4/5 person teams to design an Earth launch vehicle
- Focus on systems engineering, systems analysis, trade studies, solid modeling, and presentation design
- Details and Level 1 requirements will be posted shortly
- Progress report (in the form of an informal PowerPoint presentation) due October 19
- Final report (also PowerPoint presentation) due November 16

Large-Scale Lunar Prospector (RASC-AL)

AFSS

Saim Rizvi Justin Rhoads

Sneha Sunilkumar

Crew Systems

Kuds Desta

Nazifa Mahmud

Justin Dashiell

LSM

Robert Fink

Florian Grader-Beck

Cameron patillo

Samuel Lin

Matias Calderon

MPA

Elizabeth Quinn Nicholas Greco Saimah Siddiqui PPT

Peter Capozzoli

Nikkole Merton

Daniel Corbett

SASE

Jordan Kreh

Gavin Bramble

Kaya Ozgun

Sustained Lunar Infrastructure (RASC-AL)

AFSS

Stephen McGowan
Evan Ramm
Jeremy Snyder

MPA

Karan Rai Charley Jackson Diaz William Sheesley Chelsea May

Crew Systems

Olivia Fiore
Hunter Shiblie
Vincent Olindo

PPT

Luke Brauch
Brook Fikre
Henry Reimert

LSM

Lucas Armyn Chibueze Amos-Uhegbu Alexander Teacu

SASE

Andrew Stevens
Alex Huang
Gursajan Singh
Ethan Tang

Collaborative Exploration Rovers (GSFC)

AFSS

Aroni Gupta

Luca Petrescu

Nathaniel McIntyre

Fletcher Smith

Zach Zarus

MPA

Benjamin Loan
Alexander Hernandez
Yimang Tang (George)

Crew Systems

Lillian Spych

Payten Flanigan

Justin Meyer

Athenais Culleron-Sun

PPT

Ethan Goldberg
Nicholas Louloudes
Jack Getz

LSM

Joseph Davis

Henri Roviera

Nalina Attanayake

SASE

Gustavo Lang Jr

Dmitri Kontchaev

Brian Glover

Mars Simulation at the Moon (RASC-AL)

AFSS

William Cook
Caleb Hoffman
Ryan Rex

MPA

Ali Hassannia
Adam Lahr
Hailu Daniel
Christian Foteping Wabo

Crew Systems

Josh Gehres
Julia Joseph
Justin Rahr
Sarah Pfau

LSM

Lars Knudsen
Jacob Frazee
Sean Philips

PPT

Antonio Gallardo Amir Moon Isaac Foote

SASE

Kruti Bhingradiya
William Rowe
Devin McLenagan
Gursimar Singh

ENAE 484 Activities – Fall 2023

- Work in your ENAE 484 teams to do the planning and initial stages of design activities for ENAE 484
 - Level 1 requirements
 - Requirements flow-down
 - Work breakdown structure
 - Design reference mission
 - Baseline systems architecture
 - List of trade studies
 - Plans for experiments/hardware development
 - Schedule for Spring term

Requirements Development

- Level 1 requirements: externally imposed by sponsor (e.g., RASC-AL, faculty)
- "Flow-down" to successively finer levels of detail, and branching into discipline areas
- Requirement Verification Matrix (RVM) should track connection between lower and higher level requirements
- Every requirement at every level should have a clear path connecting it to one or more Level 1 requirements

Work Breakdown Structure

- Basically an outline of everything that has to be done to complete the systems design for ENAE 484
- Hierarchical breakdown into systems, subsystems, assemblies, components, etc.
- Frequently tied into scheduling process to ensure everything gets done in a timely manner
- Write it down now so it gets done later

Design Reference Mission (DRM)/CONOPS

- Detailed description of how a standard mission should proceed from beginning to end
- Could be graphical, numerical list, prose just needs to provide information for designing the systems that accomplish the mission, e.g.
 - Moon to Mars: where the crew is housed for the "transit" phase, how they get to / from the lunar surface, requirements for the surface base
 - Lunar Evolution: additional capabilities needed and when, plans for expansion in terms of specific surface locations or regions

Systems Architecture Baseline

- Closely related to DRM/CONOPS, but outlining how things happen (as opposed to what things happen)
- Conceptual representation of each component of transportation/construction/operations of each phase of program development
- Usually graphically presented with icons for each major system (e.g., transport, lander, habitat, etc.)

List of Trade Studies

- Every design decision should be based on an analytical trade study (Akin's Law #1!)
- Brainstorm the issues that affect design decisions, how you would quantify the parameters, and how you will perform the analysis to identify the best design decision
- Responsibility for each trade study should be assigned to specific group within the project
- Should also have schedule for when each trade study (design decision) should be completed

Plans for Experiments/Hardware Testing

- Each project may (should?) have a plan for incorporating hardware testing into the Spring activities
- Develop and document list of hardware development activities, with justification, challenges, and benefits
- Prioritize hardware testing objectives
- For top priorities, develop initial designs and list of items which need to be ordered prior to the end of the term

Schedule for Spring Term

- Develop a Gantt chart for 484 design activities next term
- Include Preliminary Design Review (PDR) last week of February, Critical Design Review (CDR) last week of April, comprehensive final report at the end of the term
- Include deadlines such as RASC-AL deliverables
- Set your own internal milestones/deadlines to avoid crunches around PDR/CDR

Deliverables

- Each project should document all of their development plans in the form of a Powerpoint presentation due at the end of this term
- On October 31, each project will submit their list of Level 1 requirements and drafts of any other progress at that date

Operational Notes

- Each project will have a Microsoft Teams site USE IT! This is the most effective way to have archival access to everything submitted by each team member, and also is convenient for remote meetings
- Remember, you don't get credit for work I can't see storing everything in Teams is the easiest solution
- You WILL need to meet as teams (both project teams and within specialty groups) to do this planning work - and it's good practice for next term