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Spacecraft Design for Habitability (part 1)
• Lecture #13 – October 10, 2023
• Required crew volumes
• Interior layouts
• Workstation design
• Habitat optimization
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Designing for Living in Space
• How much room do you need?
• How do you design the habitat shape?
• How do you design the habitat interior?
• Where do you put everything?
• How do you make it livable?
• How do you make it functional?
• How do you make it comfortable?
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How Much Room Do You Need?
• How do we define “room”?

– Floor area (in appreciable gravity)
– Volume (in microgravity)

• How do we define “need”?
– Survival
– Critical functionality
– Comfort

• How does the mission affect the answers?
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Bounding the Problem
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Environment Relative Gravity

Earth 1

Mars 0.38

Moon 0.16

Minor Bodies 10-2 – 10-4

Orbit 10-5 – 10-6

Partial 
Gravity

Microgravity

Macrogravity
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Mercury Spacecraft Interior Layout
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Habitat Design Size
• Typically estimated per crew member

– Microgravity habitat figure of merit m3/crew
– Partial gravity habitat figure of merit m2/crew

• Historical analysis
– Most available habitat data is for partial gravity missions
– Classic parametric function: “Celentano curves”

– Standard form uses A=5 (“tolerable”), 10 (“performance”), 20 
(“optimum”) m3/crew; B=20 days
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Required Space per Crew Member
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from Celentano, Amorelli, and Freeman, “Establishing a Habitability Index for Space Stations and Planetary Bases” 
AIAA 63-139, AIAA/ASMA Manned Space Laboratory Conference, Los Angeles, California, May 2, 1963

Volume Area

5 m3

10 m3

20 m3

8.8 m2

3.7 m2
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Gemini Spacecraft Cutaway
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Gemini 4 Crew Cabin
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Early Looks at Performance Data

10

from Fraser, “The Effects of Confinement as a Factor in Manned Spaceflight”NASA CR-511, 1966

20 m3

10 m3
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Total S/C Pressurized Volume Data
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from Sherwood and Capps, “Long-Duration Habitat Trade Study:…” NASA Contract NAS8-37857, 1990
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A Closer Look at Volume Rqmnts
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Data from Space Flight Experience
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from Cohen, “Testing the Celentano Curve:…”SAE 2008-01-2027
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Correlation to Space Flight Experience
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from Cohen, “Testing the Celentano Curve:…”SAE 2008-01-2027
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Straight Power-Law Curve Fit (2008)
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from Cohen, “Testing the Celentano Curve:…” SAE 2008-01-2027
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Cohen’s Fit to Data Maxima
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from Cohen, “Testing the Celentano Curve:…” SAE 2008-01-2027
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Historical Data Fitted to Celentano Curves
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Historical Trends – Habitat Volume
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Mercury
Lunar Module
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Apollo

Shuttle + Spacehab
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ISS 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Data from 24 Lunar Mission Concepts
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Focusing on Smaller Habitats 
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Curve Fit to Small Hab Data Only
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Required Habitat Volume vs. Crew Load
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Restricting Data to Durations≤180 Days
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Restricting Data to Crew Loads ≤200
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Apollo Command Module Interior
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Apollo Command Module Interior
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Apollo Command Module Interior
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Apollo Spacecraft (Rescue Configuration)
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Soyuz Interior
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Space Shuttle Flight Deck
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Space Shuttle Mid-Deck Panorama
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Space Shuttle Mid-Deck
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Orion Seating Arrangement
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Orion (Mockup) Interior
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Orion Developmental Seat System
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Boeing CST 100 Notional Interior
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Starliner (Mockup) Interior
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Starliner Interior (Training)
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Crew Dragon Interior (Prototype)
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Crew Dragon Interior (Crew-2)
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Dragon Hull and External Items

41



Spacecraft Design for Habitability

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y  O F
MARYLAND

Limitations to Internal Outfitting
• Never put anything inside a pressurized crew volume that 

could hurt the crew or threaten the mission
– Toxic substances (e.g., propellants, ammonia coolant)
– Cryogenic fluids (e.g., LOX)
– Pressurized gases that would asphyxiate the crew or overpressure the 

crew compartment (e.g., GN2)
– Fire or explosion risks (e.g., batteries)

• Experience indicates that it is easier to build and test items 
external to the pressure hull anyway
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CRS-7 Falcon 9 In-Flight Failure
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Orion Control Panel Concept
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Starliner Control Panel
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Crew Dragon Control Panel
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Space Shuttle Flight Deck Interfaces

47



Spacecraft Design for Habitability

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y  O F
MARYLAND

International Space Station
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Inflatable Lunar Habitat Concept (Vertical Layout)
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Horizontal Habitat Interior
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Pressure Vessel Shape and Orientation
• Pressure hull - assumed to be cylindrical with ellipsoidal end 

caps
– Toroidal configurations modeled as low L/D cylindrical

• Orientation of internal outfitting could be “horizontal” (floors 
parallel to long axis) or “vertical” (floors perpendicular to long 
axis)

• Assumption of consistent internal orientation
– Enforced by physics for partial gravity systems
– Standard practice for microgravity systems due to strong crew 
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Challenge to Maximize Habitable Volume
• Assume “habitable volume” involves standing headroom
• Human volume is rectangular; pressure vessels are curved
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Habitat Layout - Vertical or Horizontal?
• Geometric modeling of “packing factor” to fit humans into 

cylindrical shapes

• Mass estimation for human-rated pressurized volumes from 
JSC-26096 (converted to metric)
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Habitat Layout Trades - Floor Area
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Habitat Layout Trades - Useful Volume
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Habitat Layout Trades - Accessible Wall
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Habitat Layout Trades - Total Volume
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Internal Layout for Horizontal Habitats
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Single Floor Two Floors

Three Floors Four Floors
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Endcap Effect on Available Floor Area
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✏ = 1 ✏ = 0.5 ✏ = 0.25 ✏ = 0

Comparison is between single-deck habitats
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Effect of Endcap Shape on Floor Area
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✏ = 0 ✏ = 0.25

✏ = 0.5 ✏ = 1
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Endcap and Cylinder Effects on Mass
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✏ = endcap
height

radius

� = cylindrical
length

diameter


