Spacecraft Design for Habitability (part 1)

- Lecture \#13 - October 10, 2023
- Required crew volumes
- Interior layouts
- Workstation design
- Habitat optimization

Designing for Living in Space

- How much room do you need?
- How do you design the habitat shape?
- How do you design the habitat interior?
- Where do you put everything?
- How do you make it livable?
- How do you make it functional?
- How do you make it comfortable?

How Much Room Do You Need?

- How do we define "room"?
- Floor area (in appreciable gravity)
- Volume (in microgravity)
- How do we define "need"?
- Survival
- Critical functionality
- Comfort
- How does the mission affect the answers?

Bounding the Problem

Environment	Relative Gravity
Earth	1
Mars	0.38
Moon	0.16
Minor Bodies	$10^{-2}-10^{-4}$
Orbit	$10^{-5}-10^{-6}$

Mercury Spacecraft Interior Layout

Spacecraft Design for Habitability ENAE 483/788D - Principles of Space Systems Design

Habitat Design Size

- Typically estimated per crew member
- Microgravity habitat figure of merit $\mathrm{m}^{3} /$ crew
- Partial gravity habitat figure of merit m^{2} / crew
- Historical analysis
- Most available habitat data is for partial gravity missions
- Classic parametric function: "Celentano curves"

$$
\frac{\text { volume }}{\text { crew member }}=A\left(1-e^{-\frac{\text { duration }}{B}}\right)
$$

- Standard form uses A=5 ("tolerable"), 10 ("performance"), 20 ("optimum") m³/ crew; B=20 days

Required Space per Crew Member

from Celentano, Amorelli, and Freeman, "Establishing a Habitability Index for Space Stations and Planetary Bases" AIAA 63-139, AIAA/ASMA Manned Space Laboratory Conference, Los Angeles, California, May 2, 1963

Gemini Spacecraft Cutaway

Spacecraft Design for Habitability MARYLAND

Gemini 4 Crew Cabin

Spacecraft Design for Habitability

Early Looks at Performance Data

Total S/C Pressurized Volume Data

A Closer Look at Volume Rqmnts

SAE TECHNICAL PAPER SERIES

2008-01-2027

Testing the Celentano Curve: An Empirical Survey of Predictions for Human Spacecraft Pressurized Volume

Marc M. Cohen
Northrop Grumman Corporation

Data from Space Flight Experience

Spacecraft Type	Category	Number of missions	Max. Mission Duration Days	Min. Mission Duration Days	Max. Volume Per Crew m^{3}	Min. Volume Per Crew m^{3}	Max. Crew	Min. Crew
Mercury	Capsule	6	1.43	0.02	1.70	1.70	1	1
Gemini	Capsule	10	14.00	0.21	1.28	1.28	2	1
Apollo CM with and w/o LM	Capsule	11	12.75	6.00	4.27	2.22	3	3
Apollo LM	Lander	7	3.21	1.00	3.33	3.33	2	2
Apollo-Soyuz	Capsule	1	9.04	9.04	3.33	3.33	5	5
Vostok	Capsule	6	5.00	0.07	5.73	5.73	1	1
Voskhod	Capsule	2	1.08	1.00	2.87	1.91	3	2
Soyuz	Capsule	42	14.00	0.43	1.28	1.28	2	2
Shenzhou	Capsule	2	5.00	1.00	17.00	8.50	2	1
Space Shuttle	Shuttle	89	17.67	2.25	35.75	8.94	8	2
Shuttle- Spacelab/SpaceHab	Shuttle	25	16.90	4.00	42.70	14.66	8	5
Skylab	Station	3	84.00	28.00	120.33	120.33	3	3
Salyut	Station	17	237.00	16.00	55.25	33.50	3	2
Mir	Station	25	437.75	72.82	181.35	45.00	3	2
ISS	Station	12	195.82	128.86	201.13	85.17	3	2

U N I V E R S I TrymCohen, "Testing the Celentano Curve:..."SAE 2008-01-2027
Spacecraft Design for Habitability
MARYLAND

Correlation to Space Flight Experience

Straight Power-Law Curve Fit (2008)

from Cohen, "Testing the Celentano Curve:..." SAE 2008-01-2027
Spacecraft Design for Habitability
UNIVERSITY OF MARYLAND

Cohen's Fit to Data Maxima

Pressurized Volume Per Crew Member Versus Mission Duration: Maxima for Mission Durations for Every Crew Size in Each Spacecraft Configuration

UNIVERSITY OF MARYLAND

Historical Data Fitted to Celentano Curves

Historical Trends - Habitat Volume

Data from 24 Lunar Mission Concepts

Focusing on Smaller Habitats

Spacecraft Design for Habitability ENAE 483/788D - Principles of Space Systems Design

Curve Fit to Small Hab Data Only

Spacecraft Design for Habitability ENAE 483/788D - Principles of Space Systems Design

Required Habitat Volume vs. Crew Load

Restricting Data to Durations ≤ 180 Days

Restricting Data to Crew Loads ≤ 200

Apollo Command Module Interior

APOLLO COMMAND MODULE INTERIOR

LEFT SIDE

Apollo Command Module Interior

Apollo Command Module Interior

Apollo Spacecraft (Rescue Configuration)

Spacecraft Design for Habitability ENAE 483/788D - Principles of Space Systems Design

Soyuz Interior

Spacecraft Design for Habitability

Space Shuttle Flight Deck

Spacecraft Design for Habitability

Space Shuttle Mid-Deck Panorama

Spacecraft Design for Habitability

Space Shuttle Mid-Deck

Spacecraft Design for Habitability ENAE 483/788D - Principles of Space Systems Design

Orion Seating Arrangement

Orion (Mockup) Interior

Orion Developmental Seat System

Spacecraft Design for Habitability

Boeing CST 100 Notional Interior

Starliner (Mockup) Interior

Starliner Interior (Training)

Crew Dragon Interior (Prototype)

Crew Dragon Interior (Crew-2)

Spacecraft Design for Habitability

Dragon Hull and External Items

Spacecraft Design for Habitability I ENAE 483/788D - Principles of Space Systems Design

Limitations to Internal Outfitting

- Never put anything inside a pressurized crew volume that could hurt the crew or threaten the mission
- Toxic substances (e.g., propellants, ammonia coolant)
- Cryogenic fluids (e.g., LOX)
- Pressurized gases that would asphyxiate the crew or overpressure the crew compartment (e.g., GN2)
- Fire or explosion risks (e.g., batteries)
- Experience indicates that it is easier to build and test items external to the pressure hull anyway

CRS-7 Falcon 9 In-Flight Failure

Orion Control Panel Concept

Starliner Control Panel

Crew Dragon Control Panel

Space Shuttle Flight Deck Interfaces

International Space Station

Inflatable Lunar Habitat Concept (Vertical Layout)

Horizontal Habitat Interior

Pressure Vessel Shape and Orientation

- Pressure hull - assumed to be cylindrical with ellipsoidal end caps
- Toroidal configurations modeled as low L/D cylindrical
- Orientation of internal outfitting could be "horizontal" (floors parallel to long axis) or "vertical" (floors perpendicular to long axis)
- Assumption of consistent internal orientation
- Enforced by physics for partial gravity systems
- Standard practice for microgravity systems due to strong crew

Challenge to Maximize Habitable Volume

- Assume "habitable volume" involves standing headroom
- Human volume is rectangular; pressure vessels are curved

Habitat Layout - Vertical or Horizontal?

- Geometric modeling of "packing factor" to fit humans into cylindrical shapes

- Mass estimation for human-rated pressurized volumes from JSC-26096 (converted to metric)

$$
M<k g>=13.94\left(A_{\text {surface }}<m^{2}>\right)^{1.15}
$$

Spacecraft Design for Habitability

Habitat Layout Trades - Floor Area

Habitat Layout Trades - Useful Volume

Habitat Layout Trades - Accessible Wall

——Vertical, 1 floor -Horizontal, L=3 m - Horizontal, L=5.5 m -Horizontal, L=8 m - Vertical, 2 floors \rightarrow Design Point

Spacecraft Design for Habitability MARYLAND

Habitat Layout Trades - Total Volume

Internal Layout for Horizontal Habitats

Endcap Effect on Available Floor Area

Effect of Endcap Shape on Floor Area

—Horiz. 1 floor —Horiz. 2 floors-Horiz. 3 floors—Horiz. 4 floors
-Vert. 1 floor —Vert. 2 floors —Vert. 3 floors —Vert. 4 floors

Endcap and Cylinder Effects on Mass

