Spacecraft Habitability (part 2)

- Biomechanics of jumping
- Access between levels
- Neutral body posture
- Case study: Skylab interior design
- Stowage and logistics
- Psychosocial issues (very brief!)
- Lander and rover layouts
- Windows and sight lines

Jump Height and Floor-Ceiling Distance

- Ceiling heights are generally set to ensure that no inadvertent contact arises from any locomotion
- Simple analysis: assume constant jump energy

$$
E_{j}=m g h=m g^{\prime} h^{\prime} \Longrightarrow h^{\prime}=h \frac{g}{g^{\prime}}
$$

- Assuming a 0.5 m jump on Earth, this analysis predicts
- Jump height on Mars $=1.4 \mathrm{~m}$ (3.4 m ceiling height)
- Jump height on Moon $=3.1 \mathrm{~m}$ (5.1 m ceiling height)

Advanced Jump Height Analysis

- In jumping, leg strength is used for both supporting the body's weight and accelerating it upwards
- Assume that the total leg extension force F_{j} is constant (assumes no degradation of strength from space flight)
- In a lower gravity, more net force should be available for upwards acceleration

$$
\begin{aligned}
\frac{v_{j}^{\prime}}{v_{j}} & =\frac{F_{j}-m g^{\prime}}{F_{j}-m g} \\
s_{j} & =\frac{1}{2} \frac{v_{j}^{2}}{\frac{F_{j}}{m}-g}
\end{aligned}
$$

Results of Partial Gravity Jump Analysis

Location	Simple analysis jump height (m)	\% muscle effort availiable for jump	Ratio of Earth jump velocity V_{i} / N_{i}	Jump velocity $\mathrm{v}_{\mathrm{i}}(\mathrm{m} / \mathrm{sec})$	Advanced analysis jump height (m)
Earth	0.5	38	1	3.13	0.5
Mars	1.4	77	1.97	6.17	5.1
Moon	3.1	90	2.32	7.25	16.7

Conclusion on Ceiling Height

- The actual calculation of jump height will be more complicated than either of the techniques presented
- In any event, it will be impractical to build partial gravity habitats with ceiling heights to preclude inadvertent contact
- Microgravity habitats benefit from lower ceiling heights to provide additional translation grasp points
- Both partial gravity and microgravity habitats will probably adopt ~ 2.5 meter ceiling heights

Multilevel Interior Access

- Jumping analysis pertains here as well
- Ascending a stairway on Earth
- Step height 0.18 m
- Vertical velocity $0.36 \mathrm{~m} / \mathrm{sec}$
- Requires 280W for 80 kg human
- At constant power,
- Mars vertical velocity $1 \mathrm{~m} / \mathrm{sec}$; loft of 0.13 m
- Lunar vertical velocity $2.2 \mathrm{~m} / \mathrm{sec}$; loft of 1.6 m
- To what extent do we have to design to accommodate continued deconditioning?

Stairways vs. Ladders

- Stairways require dedicated deck space for horizontal length of run on both decks
- At 40° rise angle, "standard" stairway will require footprint of $2.9 \mathrm{~m} \times 0.75 \mathrm{~m}$
- For two deck, vertically oriented cylinder with 5 m diameter, this represents an 11% loss of both floor area and interior volume
- Ladders present problem with translation between levels while carrying items, but take up less space

Partial Gravity Sims of Ladder Use

UNIVERSITY OF
MARYLAND

Spacecraft Design for Habitability 2 ENAE 483/788D - Principles of Space Systems Design

Initial Tests of Inclined Steps

Motion Capture for Stair Climbing

Spacecraft Design for Habitability 2

Impact of Jumping and Climbing

- Ceiling surfaces will be well within reach of even a moderate "bounce"
- Mobility modifications will be motivated by repeated head impacts
- Multilevel access will be a unique solution for each gravitational environment
- Lunar system may be just a single intermediate platform
- Mars system may look like stairway with 0.5-0.7 meter riser heights
- Need further research to better understand optimum stairway angles, riser heights, etc.

Interior Accommodations

- Partial gravity habitats use conventional interior spaces
- Tasks divided between "standing", "seated", "reclining"
- Orientation is fixed by gravity vector
- Microgravity workstations organized around neutral body posture
- Pose assumed by body in microgravity when postural muscles are relaxed
- Relative orientation fixed mostly by convention and need

Microgravity Neutral Body Posture

Spacecraft Design for Habitability 2

- Principles of Space Systems Design

Other Examples of ISS Body Posture

Spacecraft Design for Habitability 2

Conclusion on Interior Accommodations

- Gravitational architecture only utilizes vertical surfaces
- Floor and ceiling are used for support, transit, and secondary systems (e.g., lighting)
- Strong desire in space architecture to take advantage of interstitial volumes created by fitting rectangular living volumes into cylindrical/ ellipsoidal pressure vessels
- ISS experience indicates that crew readily performs in situ servicing rather than requiring fixed workstations with nominal neutral body posture

Overall Habitat Design Conclusions

- If habitable volume is the metric of interest, vertical orientations are optimal unless full hemispherical end caps are chosen
- Constant interior orientation is required in partial gravity and desirable for microgravity, but extended occupancy will mitigate demand for constant reference orientation
- Unless extensive deconditioning occurs, human leg strength will create interesting design challenges for habitat interiors

Overall Habitat Design Conclusions

- Partial gravity and microgravity habitat interiors will tend to look alike
- Common ceiling heights
- General adoption of single reference orientation
- They will not, however, function alike - nor will they function like Earth habitats
- Differences in interior translation, interdeck access, work station design, etc.
- The best way to understand habitat design experimentally is to provide equivalent gravitational environments (e.g., ballasted underwater testing)

0G Workstation Layout

I5 PERCIENTIIE MAIA, 20 INCI EYEPOINI

5 PIRCLNTIII:HEMAIIE, IG INCII EYEPOINI

From Nicogossian et. al., Space Biology and Medicine, Vol. II: Life Support and Habitability, AIAA, 1994

Skylab Chair Restraint

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Skylab Table Restraints

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Isogrid Flooring Design

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Skylab Orbital Workshop Module

Cleat Restraint System

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Skylab Triangle-Cleat Shoe

Skylab Exterior Configuration

Spacecraft Design for Habitability 2

Skylab Orbital Work Shop Interior

Spacecraft Design for Habitability 2 MARYLAND

Skylab Multiple Docking Adapter Layout

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Skylab Living Quarters Layout

NASA-S-73-1066

ORBITAL WORKSHOP

CREW QUARTERS INSTALLATIONS

Spacecraft Design for Habitability 2

Skylab Sleeping Compartments

Skylab Wardroom Layout

From MSFC Skylab Crew Systems Mission Evaluation, NASA TM X-64825, 1974

Skylab Waste Management Compartment

Spacecraft Design for Habitability 2

ISS Stowage

Spacecraft Design for Habitability 2
ENAE 483/788D - Principles of Space Systems Design

Dragon (1) Resupply Mission

Spacecraft Design for Habitability 2

ISS Stowage

Spacecraft Design for Habitability 2 ENAE 483/788D - Principles of Space Systems Design

Stowage

- Number of items stowed proportional to volume, crew size, duration, complexity of mission
- Mercury: 48 items
- Gemini: 196
- Apollo: 1727
- Shuttle: 2600
- Skylab: 10,160
- ISS: >20,000
- After you stow it, how do you find it?

Internal Cargo Integration

Angela Hart/0C4
281-244-2308

Cargo Transfer Bag (CTB)

- Cargo Transfer Bags (CTBs) are Nomex stowage bags that contain removable, reconfigurable dividers used for packaging cargo for launch, disposal or return.
- CTBs are available in half, single, double, and triple sizes.
- Each configuration has a zipper closure and a removable mesh netting restraint system located inside of the CTB.

CTB	Approximate Size (external dimensions) L x W x H [cm (in.)]	Maximum Load Strapped kg (lbs)	Maximum Load Locker kg (lbs)
$\begin{aligned} & \text { SEG33111836 } \\ & \text { Half (1/2x) } \end{aligned}$	$24.8 \mathrm{~cm} \times 42.5 \mathrm{~cm} \times 23.5 \mathrm{~cm}$ (9.75 " x 16.75 " $\times 9.25$ ")	13.61 (30)	27.22 (60)
SEG33111837/838 Single (1x)	$\begin{aligned} & 50.2 \mathrm{~cm} \times 42.5 \mathrm{~cm} \times 24.8 \mathrm{~cm} \\ & \left(19.75 " \times 16.75^{\prime \prime} \times 9.75^{\prime \prime}\right) \end{aligned}$	27.22 (60)	45.36 (100)
SEG33111839 Double (2x)	$50.2 \mathrm{~cm} \times 42.5 \mathrm{~cm} \times 50.2 \mathrm{~cm}$ (19.75" x 16.75 " x $19.75^{\prime \prime}$)	54.43 (120)	81.65 (180)
$\begin{aligned} & \text { SEG33111840 } \\ & \text { Triple (3x) } \end{aligned}$	$\begin{aligned} & 74.9 \mathrm{~cm} \times 42.5 \mathrm{~cm} \times 50.2 \mathrm{~cm} \\ & (29.5 " \times 16.75 " 879.75 ") \end{aligned}$	81.65 (180)	81.65 (180)

Cargo Transfer Bags
 P/N 33111836-40

- Reference JSC 39207, Cargo Transfer Bag (CTB) Certification and Acceptance Requirements Document and JSC-39233 Rev. D, Cargo Transfer Bag (CTB) Interface Design Document (IDD) for actual CTB design, installation, volume, and interface requirements, ground handling, packaging and stowage requirements
- CTBs are certified for launch/return stowage configurations inside hard side lockers (RSR/ Middeck) and TBD ATV/HTV configurations.

Historical CTB Weights

CTB	Total Bags Used	Bag Tare Kg (lbs)	Cargo Avg. $\mathbf{K g}(\mathbf{l b s})$	Crew Provision Kg (lbs)
Half	239	$1.0(2.2)$	$5.13(11.3)$	$5.07(11.2)$
Single	223	$1.81(4.0)$	$10.26(22.6)$	$9.42(20.8)$
Double	21	$2.04(4.5)$	$20.51(45.2)$	N/A
Triple	15	$2.81(6.2)$	$30.76(67.8)$	N/A

M01 Bags

 P／N SEG32105875－301－JSC 28169，Interface Control Document（ICD）for International Space Station（ISS）Resupply Stowage Platform 1 Stowage System．
－M01 bag is certified to carry 300 lbs of cargo（includes cargo and associated installation hardware）for RSP MPLM strapping configuration and TBD lbs for ATV／HTV strapping configuration．
－Weight 10.64 lbs （empty bag）．
－Volume of M01 bag is 13 ft 3 ．
－A total of 6 Cargo Transfer Bag Equivalents
－（CTBEs）can be stowed inside an M01 bag．
－The external dimensions are：
$35.3 "(\mathrm{~W}) \times 21.0 "(\mathrm{D}) \times 32.2 "(\mathrm{H})$ ．

M02 Bags

 P/N SEG32105876-301- JSC 28169, Interface Control Document (ICD) for International Space Station (ISS) Resupply Stowage Platform 1 Stowage System.
- M02 bag is certified to carry 90.8 kg (200 lbs) of cargo (includes cargo and associated installation hardware) for RSP MPLM strapping configuration and TBD lbs for ATV/HTV strapping configuration
- Weight 6.83 lbs (empty bag).
- Volume of M02 bags is 8 ft 3 .
- A total of 4 CTBEs can be stowed
- inside an M02 Bag.
- The external dimensions are:
$35.3^{\prime \prime}(\mathrm{W}) \times 21.0 "(\mathrm{D}) \times 20.0^{\prime \prime}(\mathrm{H})$.

M03 Bags P/N 33117683

- JSC 28169, Interface Control Document (ICD) for International Space Station (ISS) Resupply Stowage Platform 1 Stowage System.
- M03 bag is certified to carry 226.8 kg (500 lbs) of cargo (includes cargo and associated installation hardware) for RSP MPLM strapping configuration and TBD lbs for ATV/HTV strapping configuration. - Weight 16.5 lbs (empty bag).
- Volume of M03 bags is $22.0 \mathrm{ft}^{3}$.
- A total of 10 CTBEs can be stowed
- inside an M03 Bag.
- The external dimensions are: $35.3^{"}$ (W) x 21 " (D) x $52.5^{"}$ (L)

M03 Bag Installation

- Some oversized hardiware/bags may require special FSE.

Food Containers

- Food Containers -
- US Non-Collapsible, SEG48101834-301 $15 " \times 12.0 " \times 4.85 "$
- Collapsible, 17КС.260Ю 3200-0 $14.875 " \times 12 " \times 4.875 "$ (Collapsed) 14.875" X 12" X .59" (Uncollapsed)
- Mass (Full) - 14.3 lbs
- Mass (Empty) -
- Non-Collapsible - 3.75 lbs
- Collapsible - 2.2 lbs

Standard Waste Containers

- Bags (compressible)
- KBO-M generally use for dry trash
- Table Food Bag (TFB) and/or Rubber-Lined Bag (RLB) used for wet trash
- Human waste containers (hard)
- EDV and KTO
- Hardware (ORUs, filters, fans, etc.)
- Odd sizes and shapes

KBO-M

- Soft Trash Bag, OpNOM: KBO-M
- PN: 11中 615.8715-OA15-01
- Heavy duty rubberized cloth bag. Metal band around the top and rubber flaps to keep the trash inside.
- Acceptable for undamaged alkaline batteries, some bio waste directly into container - i.e. kleenex; hazardous waste must be properly contained prior to insertion
- Dimensions (Stowed) $11.75 "$ x 11.75 " x 2 "
- Dimensions (Full) - 17" long x 11.5 " diameter ring x 8" diameter

- Mass (Full) - 17.5 to $20 \mathrm{lbs}_{46}$

Food Waste Bag

- Food Waste Bag, OpNOM: Food Waste Bag PN: $11 \phi 615.8716-\mathrm{OA} 15$
- Soft, rubberized cloth bag used to place table scraps, and other small wet waste items. This bag can be used for wet or dry trash.
- Dimensions (Stowed) $10 "$ x 5 " x $0.2 "$
- Dimensions (Full) x 5" diameter
- Mass (Full) - 2 lbs

Rubber Lined Bag

- Rubber Lined Bag, OpNOM: Rubber Lined Bag PN: 11中615.8716-20A15,
- Rubberized cloth lined bag can contain up to 3 full KBO-M bags or approximately 8 table bags. It has a draw string closure and is nominally closed tighter with the rubber ties known as "szkoo'tee". Can be wiped down and reused. Preferred by crew for wet trash. Not as heavy duty as the KBO-M, but larger.
- Dimensions (Stowed) - $11.75 " \times 11.75 "$ x 2.2" (folded around KBO-M)
- Dimensions (Full) - 25" x 15"
- Mass (Full) - 23.7 lbs

EDV

- EDV, OpNOM: EDV PN: 11ф 615.8711-0A15-1
- Primarily used for urine and wastewater collection. Limited Life: 90-days of on-orbit operations (defined as any operations where the hydro-connector is connected/disconnected).
- Dimensions (Stowed) - EDVs usually launched in set of 6 buckets and separately 6 lids. With rack attachment spike and lid
- Top - 13.1" (Diameter) x 21.57" (H)
- Bottom 9" (diameter)
- EDV Bucket - 17.3" (H) x 13" (Diameter)
- EDV lid - 4.1" (H) x 13" (Diameter)
- Dimensions (Full) - Without rack attachment spike and lid
- Top - 13" (Diameter) x $15.7 "\left(\begin{array}{l}\text { (H) }\end{array}\right.$
- Bottom - 9"(Diameter)

- Solid Waste Container, OpNOM: KTO PN: 11 ф 615.8720A55-0,
- The KTO is used for solid waste and can contain biological waste.
- Dimensions (Stowed) -
- Body - 13" (H) x 13 " (diameter) - Lid - 2" (H) x 13" diameter
- Dimensions (Full) - 15 " (H) x 13 " diameter
- Mass (Full) - 25.4 lbs

III- =1III Example Stowage in SpACESTATION
 Progress for Disposal

Rubber lined bags

Example Stowage in MPLM for Launch

||III $==$ |IIII
 IIII ${ }^{\text {F }}$ IIII SPACESTATION

 Historical Delivery Dates

 Historical Delivery Dates for Launch Integration

\% Cargo	Delivery Template	Type Cargo
40	Launch minus (L-) 4 to 3 months	All cargo types, Hard mounted items
10	L- 2 months	All size CTBs/Mbags
35	L-1 month	All size CTBs/5 and 10 MLE bag, some hardmount, Middeck lockers
10	L-2 weeks	All size CTBs/5 and 10 MLE bag, Middeck lockers
5	L-24 to 6 hours	All size CTBs, Middeck lockers

Estimated Delivery Internal Cargo Types

\% Cargo by Item	\% Cargo by Volume	Type Cargo
<5	<5	Hardmounted Items
15	35	Oversized Items (larger than triple CTB)
75	50	Non-bag items (food containers, waste containers, etc)
10	10	

III- - III On-Orbit Estimates for Cargo Transfer

- Cargo operations minimum stay time is based on the time required to unload (Internal and External)
- Internal Estimates:
- Typical MPLM flight transfer estimated between 80 and 120 hours transfer (Approximately 200 CTBe) depending on the amount of cargo, that includes transferring the resupply items to ISS and stowing the return items in MPLM.
- Cannot necessarily increase crew participation to increase hours. Inefficiencies in the operations due to limited working space.
- Typically no more than 3-4 crew members dedicated to transfer
- Typically no more than 6 hours per day/ 5 days per week.
- Rack Transfer Estimates - Approximately 2 crew - 1 hour (2 crew hours) together to transfer 1 rack to ISS. Not including connecting up to the ISS utlities
- Maximum stay time is the time to fill the vehicle with waste based on waste generation rates.
- Increased capability improves operational flexibility

Standardized Stowage - CTBs

Item	P / N	External Dimensions $[\mathrm{mm}](\mathrm{LxWhH})$	Maximum Load $[\mathrm{kg}]$
Half Size	SEG33111836	$235 \times 426 \times 248$	13.62
Full Size	SEG33111838	$248 \times 426 \times 502$	27.24
Double Size	SEG33111839	$502 \times 426 \times 502$	54.48
Triple Size	SEG33111840	$502 \times 426 \times 749$	81.72

Spacecraft Design for Habitability 2

Psychosocial Issues

- Scheduling and planning
- Recreation
- Command structure
- Issues affecting crew morale
- Environment
- Food and drink
- Exercise
- Hygiene
- Noise
- Lighting

Apollo Lunar Module Interior

Spacecraft Design for Habitability 2

Apollo Lunar Module Interior

Segmented Rover - Inboard Plan

Top view:

Segmented Rover - Inboard Profiles

Bhardwaj et. al., "Design of a Pressurized Lunar Rover - Final Report" NASA CR-192033, Virginia Polytechnic Institute and State University, 1992.

TURTLE Interior Mockup - ENAE 4842008

LER Interior - Driving Stations

Spacecraft Design for Habitability 2 ENAE 483/788D - Principles of Space Systems Design

Analysis of Sight Lines

Bhardwaj et. al., "Design of a Pressurized Lunar Rover - Final Report" NASA CR-192033, Virginia Polytechnic Institute and State University, 1992.

Shuttle Windows (Fwd Flight Deck)

S125E012506

ISS Cupola (External)

Spacecraft Design for Habitability 2

ISS Cupola (Internal)

Spacecraft Design for Habitability 2

Spacecraft Windows Requirement

At a minimum, all human-tended spacecraft must have at least two windows excluding hatch windows for external situational awareness, safety, piloting and navigation, spacecraft inspections, observation and photodocumentation of engineering anomalies and scientific and environmental phenomena, crew psychological support, physical health reasons (exposure to natural light for vitamin D production and calcium absorption to prevent bone loss), and for supplementary, alternative, and contingency lighting. In addition, one window must be a Category B window [minimum circular clear viewing aperture diameter $=40 \mathrm{~cm}$], as spacecraft inspections and photo-documentation of engineering anomalies and scientific and environmental phenomena, astronomy, and planetary (Earth) observation have historically been major crew activities during on- and off-duty hours. Because of their larger size, Category B windows will also allow more natural light into the cabin than any of the other categories of window except Category A windows, with which a given spacecraft may not necessarily be equipped.

NASA Human Integration Design Handbook, Rev. 1, June 2014

ISS Crew Quarters

Spacecraft Design for Habitability 2

SEV Interior - Bunks and Suitports

Spacecraft Design for Habitability 2

NASA Crew Quarters Requirements

Private quarters should be provided for each crewmember. For missions ≤ 30 days, the crew quarters can be deployable; for missions >30 days, crew quarters should be permanent. The crew quarters should be co-located with other "clean" areas of the habitat (e.g., galley, science work- spaces, and medical workspaces); hygiene tasks should be performed in separate, dedicated spaces to limit cross-contamination (Section 4.3).

Each crew quarter should incorporate a rigid enclosure and door, light and sound proofing, adjustable ventilation (air flow speed and direction that is adjustable for personal preference and to mitigate CO_{2} buildup), caution and warning indicators (audible and visual), power and data connections (for laptops, tablets, task lighting, general charging), peripheral mounts (for laptops and tablets), customizable mood and spot lighting (relocatable, adjustable color/brightness), flexible temporary stowage (e.g., Velcro, bungees, nets, caddies), adjustable sleeping bag positioning (both orientation and location within the crew quarter), and direct access to any additional personal crew stowage lockers from within the crew quarters. Adjustable aids for stability and translation should be provided to accommodate crew activities such as working on a laptop/tablet, changing clothes, reading, and watching entertainment. The dimensions of the crew quarters should be at least 30 " wide x 30 " deep and >78 " long to comfortably accommodate crewmembers, while accounting for on-orbit spinal elongation.

- NASA Deep Space Habitability Guidelines, TP-2020-220505, November 2019

