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Introduction to Space Life Support
• Lecture #15 - October 17, 2023
• Life support systems overview
• Major component systems
• Open-loop life support
• Physico-chemical life support
• Bioregenerative life support
• Case study: UMd Minimum Functional Lunar Habitat Element
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Essentials of Life Support
• Air

– Constituent control
• CO2 scrubbing
• Humidity control
• Particulate scrubbing
• O2, N2 makeup

– Temperature control
• Water
• Food
• Waste Management
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Human Metabolic Inputs and Outputs
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from Jones, “Design Rules for Space Life Support Systems” SAE 2003-01-2356, July 2003
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Oxygen Requirements
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from Lange et. al., “Advanced Life Support Requirements Document” JSC-38571B, Sept. 2002
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Water Requirements
• Potable water - 2 L/crew-day (2 kg/crew-day)
• Hygiene water

– Nominal - 2.84-5.16 L/crew-day
– Contingency - 2.84 L/crew-day

• from Lange et. al., “Advanced Life Support Requirements 
Document” JSC-38571B, Sept. 2002
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Metabolic Energy Requirements
• Men (W=mass in kg)

– 18-30: 26W+1154 kcal/day
– 30-60: 19.7W+1494 kcal/day

• Women (W=mass in kg)
– 18-30: 23.5W+794 kcal/day
– 30-60: 13.9W+1326 kcal/day

• Add 500 kcal/day for
– EVA days
– Moderate exercise days
– End-of-mission countermeasure days
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Life Support Design Rules of Thumb
• A crew member requires 5 kg of consumables/day

– ~1/2 water, 1/3 food, 1/6 oxygen
– (including water in food) 77% H2O, 17% O2, 12% food solids
– Dehydration reduces food mass by 2/3

• Food solids produce about 5 calories/gm
• Respiration produces about 3.4 calories/gm O2

• Males need about 1/3 more calories than females
– Or, males need 1/7 more than average, females 1/7 less
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ISS Life Support Block Diagram
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ISS Life Support Schematic

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996
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Equivalent Systems Mass
• Compress multiple decision criteria (mass, power, volume, 

thermal control) into one (mass)
• ESM relates consumables to marginal mass required to supply 

them
• ISS ESM values:

– Volume: 67 kg/m3

– Power: 77 kg/kW
– Thermal: 164 kg/kW

13
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ESM Conversion Factors by Mission
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Mission/
Segment

Volume
kg/m3

Power
kg/kW

Thermal
kg/kW

Crew Time
kg/crew-hr

ISS 67 476(cont) 
77(day) 164 1.6

Mars 
transit 16 83 21 1.1

Mars 
surface 2.1 175 67 1.1

Minimal 
Lunar 51 300 (cont)

25 (day) 50 2
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ISS Consumables Budget
Consumable Design Load

(kg/person-day)
Oxygen 0.85
Water (drinking) 1.6
Water (in food) 1.15
Water (clothes and dishes) 17.9
Water (sanitary) 7.3
Water (food prep) 0.75
Food solids 0.62
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Resupply with Open Loop Life Support

16

from Ewert, “Life Support System Technologies for NASA Exploration Systems”
ARO Workshop on Base Camp Sustainability, Sept. 2007
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Effect of Regenerative Life Support
• Open loop life support          100% resupply
+ Waste water recycling 45%
+ CO2 absorbent recycling 30%
+ O2 regenerate from CO2 20%
+ Food from wastes 10%
+ Eliminate leakage 5%
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Air Revitalization Block Diagram
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from Wieland, “Designing for Human Presence in Space…” NASA RP-1324, 1994
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Air Revitalization Technologies

19

from Wieland, “Designing for Human Presence in Space” NASA RP-1324, 1994



Life Support Systems Design

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y  O F
MARYLAND

Atmospheric Gases Storage/Generation
• Storage

– High pressure gas
– Cryogenic liquid
– Chemical storage

• Oxygen Generation
– Static feed water electrolysis
– Solid polymer electrolysis
– CO2 electrolysis
– Water vapor electrolysis

20
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High Pressure Gas Tanks
• Typical pressures 200 atm (mass optimized) to 500-700 atm 

(volume optimized)
• GN2 tanks 0.56-1.7 x mass of contained gas
• GOx tank 0.36 x mass of contained gas
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Air Component Storage
• Cryogenic Liquids

– O2: 1140 kg/m3, Tboil= -183°C=84K (= -308°F)
– N2: 808 kg/m3, Tboil= -196°C=77K (= -320°F)
– H2: 70 kg/m3, Tboil= -253°C=20K (= -433°F)

• Gases
– O2: 1.43 kg/m3 @ STP (292 kg/m3 @ 3000 psi)
– N2: 1.25 kg/m3 @ STP (255 kg/m3 @ 3000 psi)
– H2: 0.09 kg/m3 @ STP (18.4 kg/m3 @ 3000 psi)
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Cryogenic Tankage
• Volume-based relation

• Specific mass-based relations

• Generic mass-based nondimensional relation

23

m < kg >= 68.38
�
V < m3 >

⇥0.75

mtank < kg >= 0.3485 [MLOX < kg >]0.75

mtank < kg >= 0.4512 [MLN2 < kg >]0.75

mtank < kg >= 2.826 [MLH2 < kg >]0.75

mtank

mcontents
= 68.38

✓
⇢contents
mcontents

◆0.25
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Solid Fuel Oxygen Generation (SFOG)
• Decomposition of lithium perchlorate generates oxygen –
 releases 60% of its weight as O2

• Vika SFOG system used on ISS – one cartridge releases 600 l of 
O2 and burns for 5-20 minutes at 450°-500°C

• Oxygen is cooled and filtered and released into cabin
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Environmental Control and  
Life Support System (ECLSS)
Earth’s natural life-support system provides the air we breathe, the water we drink, and other 
conditions that support life. For people to live in space, however, these functions must be 
performed by artificial means. The ECLSS includes compact and powerful systems that provide 
the crew with a comfortable environment in which to live and work. 

The on-orbit ECLSS is supplemented by 
an assortment of resupply vehicles 
provided by the international 
partnership. The U.S. Space Shuttle 

 delivers water (scavenged from the water 
produced by the Shuttle fuel cells and  
transferred across to ISS in CWCs), high 
pressure O2 and N2, and atmospheric gas.  
The Russian Progress, Japanese H-II 
Transfer Vehicle (HTV), and European 
Automated Transfer Vehicle (ATV) 
deliver water and atmospheric gas. 

The ISS Program is currently reviewing a 
high pressure gas delivery system for post 
Shuttle retirement.  The Nitrogen/
Oxygen Resupply System (NORS) 
would provide capability to deliver high 
pressure O2  and N2 on any vehicle with 
pressurized delivery capability, including 
U.S. Commercial Resupply System 
(CRS) vehicles.

Regenerative environmental  
control life support in the U.S.  
segment of the ISS.
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LiClO4 ⟶ LiCl + 2O2



Life Support Systems Design

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y  O F
MARYLAND

Electrolytic Oxygen Generation
• Static Feed Water Electrolysis
• Solid Polymer Water Electrolysis
• Water Vapor Electrolysis
• CO2 Electrolysis

25
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CO2 Scrubbing Systems
• CO2 production ~1 kg/person-day
• Lithium hydroxide (LiOH) absorption

– Change out canisters as they reach saturation
– 2.1 kg/kg CO2 absorbed
– Also works with Ca(OH)2, Li2O, KO2, KO3

• Molecular sieves (e.g., zeolites)
– Porous on the molecular level
– Voids sized to pass O2, N2; trap CO2, H2O
– Heat to 350°-400°C to regenerate

26
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CO2 Regenerable Scrubbing Systems
• CO2 production ~1 kg/person-day
• 4-Bed Molecular Sieves (4BMS)

– Dual paths (one scrubbing, one regenerating)
– Desiccant bed for moisture removal, 5 A zeolite sieve for CO2
– Heat to 350°-400°C to regenerate
– 30 kg; 0.11 m3; 170 W (all per kg/day of CO2 removal)

• 2-Bed Molecular Sieves (2BMS)
– Carbon molecular sieve for CO2

– 16 kg; 0.09 m3; 77 W (per kg/day CO2)

27
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CO2 Regenerable Scrubbing Systems
• Solid Amine Water Desorption (SAWD)

– Amine resin absorbs H2O and CO2; steam heat regenerates
• Amine + H2O --> Amine-H2O (hydrated amine)
• Amine-H2O + CO2 --> Amine-H2CO3 (bicarbonate)
• Amine-H2CO3 + steam --> Amine + H2O + CO2

– 17 kg; 0.07 m3; 150 W (all per kg-day of CO2 removal)

28
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CO2 Regenerable Scrubbing Systems
• Electrochemical Depolarization Concentration (EDC)

– Uses fuel-cell type reaction to concentrate CO2 at the anode
– CO2 + 1/2O2 + H2 --> CO2 + H2O + electricity + heat
– CO2 and H2 are collected at anode and directed to CO2 recycling 

system (combustible mixture!) 
– 11 kg; 0.02 m3; 60 W (all per kg-day of CO2 removal); does not include 

reactants for power output

29
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CO2 Membrane Removal Systems
• Osmotic membranes

– Poor gas selectivity
– Returns CO2 to cabin air

• Electroactive carriers
– Electroactive molecules act as CO2 “pump”
– Very early in development

• Metal Oxides
– AgO2 absorbs CO2 (0.12 kg O2/kg AgO2)
– Regenerate at 140°C for 8 hrs (1 kW) - 50-60 cycles

30
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CO2 Reduction
• Sabatier reaction

– CO2 + 4H2 --> CH4 + 2H2O
– Lowest temperature (250°-300°C) with Ni catalyst
– Electrolyze H2O to get H2, find use for CH4

– 91 kg; 3 m3; 260 W (all per kg-day of CO2 removal)
• Bosch reaction

– CO2 + 2H2 --> C + 2H2O
– 1030°C with Fe catalyst
– C residue hard to deal with (contaminates catalyst)

31
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Nitrogen Makeup
• Nitrogen lost to airlock purges, leakage (can be ~1%/day)
• Need to replenish N2 to maintain total atmospheric pressure
• Choices:

– High pressure (4500 psi) N2 gas bottles
– Cryogenic liquid nitrogen
– Storable nitrogen-bearing compounds (NH3, N2O, N2H4)
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Trace Contaminant Control
• Particulate Filters (dusts and aerosols)
• Activated Charcoal (high molecular weight contaminants)
• Chemisorbant Beds (nitrogen and sulpher compounds, 

halogens and metal hybrids)
• Catalytic Burners (oxidize contaminants that can’t be 

absorbed)
• 100 kg; 0.3 m3; 150 W (all per person-day)
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Types of Water
• Potable water

– Drinking and food preparation
– Organic solids < 500µg/liter

• Hygiene water
– Washing
– Organic solids <10,000 µg/liter

• Grey water (used hygiene water)
• Condensate water (from air system)
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Water Management
• Distillation Processes

– Vapor Compression Distillation (VCD)
– Thermoelectric Integrated Membrane Evaporation (TIMES)
– Vapor Phase Catalytic Ammonia Removal (VAPCAR)
– Air Evaporation

• Filtration Processes
– Reverse Osmosis (RO)
– Multifiltration (MF)
– Electrodialysis

35
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Water Distillation
• Vapor Compression Distillation (VCD)

– 300 kg; 1.5 m3; 350 W (for 100 kg H2O processed per day)
• VAPCAR

– 550 kg; 2.0 m3; 800 W (for 100 kg H2O processed per day)
• TIMES

– 350 kg; 1.2 m3; 850 W (for 100 kg H2O processed per day)
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Solid Waste Disposal Technologies
• Freeze Drying
• Thermal Drying
• Combustion Oxidation
• Wet Oxidation
• Supercritical Water Oxidation
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Bioregenerative Life Support Schematic

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996
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Life Support Systems Analysis (example)

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996
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Impact of Closure on Duration

40

From Harry Jones, “Don’t Trust a Management Metric, Especially in Life Support”, ICES-2014-073, July 2014
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Impact of Closure on Duration

41

From Harry Jones, “Don’t Trust a Management Metric, Especially in Life Support”, ICES-2014-073, July 2014
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UMd Final MFH Design
• 3.65 m diameter
• 5.5 m tall
• 4:1 ellipsoidal endcaps
• Three module berthing ports (Cx standard)
• Four suitports (two in berthing hatches)
• Inflatable airlock
• All 6063-T6 structure

42
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Lower Deck Layout
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Upper Deck Layout

44
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MFHE Life Support Requirements
• 4 crew for nominal mission of 28 days
• Additional contingency mission of 30 days
• 8 crew in handoff mode for 48 hours

‣ 4 95th percentile American males for 60 days
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Lunar Habitat Water Recycling Trades
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Effect of Duration on Life Support
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MFHE Operational Assumptions
• Daily two-person EVAs during nominal operations
• One two-person airlock cycle per week and two two-person cycles in support of crew 

rotation for 12 suit transits/six airlock pressurize/depress cycles (all other EVAs 
performed using suitports)

• No appreciable atmosphere loss with a suitport cycle
• No EVAs during the contingency support period
• One four-person EVA at the end of the mission for the crew to return to the ascent vehicle
• 64 EVA suit operations during a nominal mission, based on the preceding assumptions
• Power supplied by a Constellation program Mobile Power Unit (MPU) and not charged 

against habitat mass
• Systems to be considered should have the maximum TRL of the possible candidates 

(proven systems should be used for simplicity and mission assurance)
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EVA Support Requirements
• 64 suit operations in a nominal mission (no EVA during 

contingency phase)
• Suit CO2 scrubbing options

– LiOH canister (6.4 kg, expendable)
– METOC canister (14.5 kg, reusable)

• METOX regeneration oven
– Regenerates two canisters over 14 hours
– 48 kg and 1000 W

• Each EVA uses 0.72 kg of O2 and 2.1 kg of H2O --> total 46.1 kg 
O2 and 135 kg H2O
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Airlock Operating Requirements
• 6.5 m3 with 90% scavenging on depress
• Cabin atmosphere 8 psi (30% O2)
• Atmospheric density 0.667 kg/m3

• 0.43 kg of atmosphere mix lost per airlock cycle
• 6 cycles/mission --> 6.93 kg (2.1 kg O2, 4.9 kg N2)
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CO2 Scrubbing Options
• LiOH canisters
• METOX canisters and regeneration
• Four bed molecular sieve (4BMS - preferred over 2BMS due to 

higher TRL and better recovery of atmospheric moisture)
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CO2 Scrubbing Analysis
• LiOH canisters
• METOX canisters and regeneration
• Four bed molecular sieve (4BMS - preferred over 2BMS due to 

higher TRL and better recovery of atmospheric moisture)
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Technology Mission Mass (kg) Power (W)
LiOH 420 –

METOX 
(oven + 4 canisters)

106 1000
4BMS 120 680



Life Support Systems Design

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y  O F
MARYLAND

Support of EVA CO2 Systems
• Requires two METOX canisters and second oven (8 hour EVA 

with pre- and post-EVA prep, 14 hour regeneration cycle with 
cool-down)

• To stay below 50-55 cycle limits and relieve operational 
constraints, baseline 4 METOX canisters

• System with EVA support will double mass and power from 
habitat alone (212 kg, 2000 W)

• Alternative would require 410 kg of LiOH canisters
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Support of Rover CO2 System
• Multi-day pressurized rover (e.g., LEV/SEV)
• Designed to use same life support system as EVA portable life 

support system (PLSS)
• Required 3 METOX canisters/day (two EVAs and cabin at 

reduced activity levels)
• No capability for regeneration during sortie - 18 canisters 

returned to habitat following 6-day sortie
• Regeneration of canisters will require third oven and 5.25 days
• Total METOX canister mass (2x18) is 522 kg
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Alternative Rover CO2 Options
• LiOH canisters will mass 115 kg/sortie
• Four 6-day sorties over 28 day nominal mission --> 461 kg for 

LiOH canisters
• Compare to total METOX mass of 570 kg for two 18-canister 

sets and dedicated regeneration oven
• Optimal approach is to use METOX for habitat and local EVA, 

LiOH for rovers and remote EVA
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