Spacecraft Communications

- Lecture #25 November 28, 2023
- Antennas
- Orbits
- Modulation
- Noise
- Link Budgets

© 2023 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Decibels

- 10^{-23})
- To make life easier, convert everything to dB

2

- Doubling of value = 3 dB
- Can have dB(units) dBW, dBm, etc.

base values UNIVERSITY OF ARYLAND

• Parameters range across many orders of magnitude (~10¹⁸ –

• In the olden days, tended to lose precision with multiplications $dB = 10 \log_{10} X$

Calculate link budgets by adding dB rather than multiplying

Antennas

- Receive & transmit RF (radio frequency) energy
- Size / type selected directly related to frequency / required gain

Gain Pattern

Omni Antenna (idealized)

Isotropic antenna **Omni Antenna (typical)**

Gain is relative to isotropic with units of dBi

Directional (Hi-Gain) Antenna

-3 dB Beamwidth

Space Communications ENAE 483/788D – Principles of Space Systems Design

3

horn

Orbit Considerations – Line of Sight

5

6

Florida ground station with spacecraft altitudes 400, 800, and 1200 km

Ground station elevation angle of 0 degrees

Merritt Island

7

Ground station elevation angles of 0, 10, and 20 degrees

Spacecraft altitude of 1200 kM

je

Space Communications ENAE 483/788D – Principles of Space Systems Design

8

Effects of terrain and antenna limitations

9

Hawaii (HAW3), Alaska (AGIS), Wallops Island (WPSA), Svalbard (SGIS), McMurdo (MCMS)

10

Frequency Bands

- S-Band 2-3 GHz – Space operation, Earth exploration, Space research
- X-Band 7-8 GHz
 - Earth exploration, Space research
- Ku-Band 13-15 GHz
 - Space research
 - Loss from rain
- Ka-Band 23-28 GHz
 - Inter-satellite, Earth exploration

Ku-Band

X-Band

11

Space Communications ENAE 483/788D – Principles of Space Systems Design

W-Band

Ka-Band

Lasers

Types of Modulation

- Amplitude Modulation
 - $s(t) = A [1 + m(t)] \cos(2\pi f_c t)$
 - Easy to implement
 - Poor noise performance
- Frequency Modulation
 - $x(t) = A \cos[2\pi \int_{0 \to t} (f_c + f_\Delta m(\tau)) d\tau]$
 - Requires frequency lock loop
- Phase Modulation
 - $s(t) = A \cos[2\pi f_c t + \beta m(t)]$
 - Requires phase lock loop
 - Most digital modulation techniques involve PM

UNIVERSITY OF MARYLAND

12

Pulse Code Modulation Protocols

13

UNIVERSITY OF MARYLAND

ENAE 483/788D – Principles of Space Systems Design

Digital Modulation Techniques

- On-Off Keying (OOK)
- Frequency Shift Keying (FSK)
- Bi-Phase Shift Keying (BPSK)
- Quadrature Phase Shift Keying (QPSK)

Polarization

- Orientation of electric field vector
- Shape traced by the end of the vector at a fixed location, as observed along the direction of propagation
- Some confusion over left hand / right hand conventions

15

Circular Polarization Left hand

Circular Polarization Right hand

The Problem: Verify the Link

ENAE 483/788D – Principles of Space Systems Design

Definition of Variables

 $[]_t \equiv$ refers to transmitting system $[]_t \equiv$ refers to receiving system $A_{\rho} \equiv \text{Effective area of the antenna (m²)}$ $c \equiv \text{Speed of light} (2.998 \times 10^8 \text{ m/sec})$ $f \equiv$ Frequency $(2\pi/\lambda)$ $G_r \equiv Gain of the component$ $P \equiv$ Power at the antenna (W) $R \equiv$ Free-space distance between antennas (m) $\eta \equiv \text{Efficiency of the component}$ $\lambda \equiv Wavelength (m)$

17

Radio-Frequency Propagation

 $P_{\rm r} = \frac{P_{\rm t} 4\pi A_{\rm e_t} A_{\rm e_r}}{\lambda^2 4\pi R^2} = \frac{P_{\rm t} A_{\rm e_t} A_{\rm e_r}}{R^2} \times \frac{f^2}{c^2}$

 $P_{\rm r} = \frac{P_{\rm t}G_{\rm t}A_{\rm e}}{4\pi R^2}$

 $G = \frac{4\pi A_{\rm e}}{\lambda^2} = \eta \left(\frac{\pi D}{\lambda}\right)^2$

 $P_{\rm r} = \frac{P_{\rm t} G_{\rm t} \lambda^2 G_{\rm r}}{4\pi R^2 4\pi} = \frac{P_{\rm t} G_{\rm t} G_{\rm r}}{(4\pi)^2 R^2} \times \frac{c^2}{f^2}$

Space Communications ENAE 483/788D – Principles of Space Systems Design

Noise

- Any signal that isn't part of the information sent
- Signal noise
 - Amplitude noise error in the magnitude of a signal – Phase noise – error in the frequency / phase modulation
- System Noise
 - Component passive noise
 - Component active noise (amplifiers, mixers, etc...)
- Environmental Noise
 - Atmospheric noise
 - Galactic noise
 - Precipitation

UNIVERSITY OF MARYLAND

Signal Noise

Amplitude Noise

20

Phase Noise

System Noise

- motion of atoms
- Passive devices' thermal noise is directly related to the temperature of the device, its bandwidth, and the frequency of operation
- Noise is generated by thermal vibration of bound charges
- A moving charge generates an electromagnetic signal
- Passive components include
 - Resistive loads (power loads)
 - Cables & other such things (like waveguides)

• All real components generate "thermal noise" due to the random

21

Environmental Noise

- Rain loss, particularly in the Ku band
- Snow is not a problem
- Lightning
- Stars, galaxies, planets • Human interference

Noise Temperature

- noise is generated in the receiving system
 - The physical noise temperature of a device, T_n , results in a noise power of $P_n =$ KT_nB
 - K = Boltzmann's constant = $1.38 \times 10^{-23} \text{ J/K}$; K in dBW = -228.6 dBW/K T_n = Noise temperature of source in Kelvin B = Bandwidth of power measurement device in hertz
- Satellite communications systems work with weak signals, so reduce the noise in the receiver as far as possible

23

- Generally the receiver bandwidth is just large enough to pass the signal
- Liquid helium can hold the physical temperature down

• Noise temperature provides a way of determining how much thermal

Typical Receiver Noise Performance

from Pisacane, <u>Fundamentals of Space Systems</u>, 2nd ed., Oxford Univ. Press, 2005 UNIVERSITY OF MARYLAND 24 ENAE 483/788D – Principles of Space Systems Design

S/N and NF

 Signal to Noise Ratio Noise Figure in a communications system - Related to the noise temperature of a device: $T_{d} = T_{0}(NF - 1)$ T_0 = reference temperature, usually 290 K

– Most common description of the quantity of noise in a transmission

S/N of input divided by S/N of output for a given device (or devices)

25

System Noise Temperature

Example:

26

T_s @ Reference Point G @ Reference Point = 0 dB

System Noise Temperature = T_s °K

$$\mathbf{T}_{s} \approx \mathbf{T}_{sky} + \frac{(1 - \in)\mathbf{T}_{o}}{\in} + \frac{(\mathbf{NF}_{\mathsf{LNA}} - 1)\mathbf{T}_{o}}{\in} + \frac{(\mathbf{NF}_{\mathsf{PC}} - 1)\mathbf{T}_{o}}{\in \mathbf{G}_{\mathsf{LNA}}} + \frac{(\mathbf{NF}_{\mathsf{IF}} - 1)\mathbf{T}_{o}}{\in \mathbf{G}_{\mathsf{LNA}}} + \frac{(\mathbf{NF}_{\mathsf{IF}} - 1)\mathbf{T}_{o}}{\in \mathbf{G}_{\mathsf{LNA}}\mathbf{G}_{\mathsf{DC}}} + \dots$$

 $T_s = 50^\circ + 290^\circ + 2*0.585*290^\circ + (2*10)^\circ$ $T_s = 681.136^\circ$ K = 28.33 dB

UNIVERSITY OF MARYLAND T_o is reference temperature of each device = 290°K (assumed)

 $T_s = 50^{\circ} + 290^{\circ} + 2*0.585*290^{\circ} + (2*10*290^{\circ}/3162.3) * (1 + 1/1,000 + 1/1,000,000)$

BER and E_b/N_o

- The rate at which bits are corrupted beyond the capacity to reconstruct them is called the BER (Bit Error Rate).
 - A BER of less than 1 in 100,000 bits (a BER of 10⁻⁵) is generally desired for an average satellite communications channel.
 - For some types of data, an even smaller BER is desired (10-7).
- The BER is directly dependent on the E_b/N_o, which is the ratio of Bit Energy to Noise Density.
 - Since noise density is difficult to control, this means that BER can be reduced by using a higher power signal, or by controlling other parameters to increase the energy transmitted per bit.

27

• The BER will decrease (fewer errors) if the E_b/N_o increases.

Link Margin

• Received E_b/N_o minus required E_b/N_o (in dB) for the BER (which varies with encoding scheme used)

• Required E_b/N_o found by adding losses to the expected E_b/N_o

Diagram of a Link Budget

Standard Link Budget Ana	lysis				
from David G. MacDonnell, "Commur	nications A	nalysis of Pot	ential Upgrades of NAS	A's Deep	Space Network
and numerous other sources					
Note: Only change values in boxed	cells!				
				dB	
Speed of light	m/sec	С	3.00E+08	84.77	
Frequency	Hz	f	2.50E+09	93.98	
Wavelength	m	λ	0.1200	-9.21	
Diameter of Transmitting Antenna	m	d(t)	0.04	-14.18	
Area of Transmitting Antenna	m^2	A(t)	0.00	-29.41	
Efficiency of Transmitting Antenna		η(t)	0.63	-2.04	
Transmitter Gain		G(t)	6.25E-01	-2.04	
Transmitter Power	W	Ρ	11.47	10.60	
EIRP	W	EIRP	7.17E+00	8.55	
slant range	m	D	5.00E+07	76.99	
Power flux density	W/m^2	Φ	2.28E-16	-156.42	
Diameter of Receiving Antenna	m	d(r)	4.50	6.53	
Area of Receiving Antenna	m^2	A(r)	15.90	12.02	
Efficiency of Receiving Antenna		η(r)	0.55	-2.60	
Receiver Gain		G(r)	7.63E+03	38.83	
Carrier Power Received	W	С	2.00E-15	-147.00	
Receiver System Noise Temp	degK	T(s)	100.00	20.00	
Boltzmann Constant	J/degK	k	1.38E-23	-228.60	

Transmitter Gain		G(t)	6.25E-01	-2.04	
Transmitter Power	W	Ρ	11.47	10.60	
EIRP	W	EIRP	7.17E+00	8.55	
slant range	m	D	5.00E+07	76.99	
Power flux density	W/m^2	Φ	2.28E-16	-156.42	
Diameter of Receiving Antenna	m	d(r)	4.50	6.53	
Area of Receiving Antenna	m^2	A(r)	15.90	12.02	
Efficiency of Receiving Antenna		η(r)	0.55	-2.60	
Receiver Gain		G(r)	7.63E+03	38.83	
Carrier Power Received	W	С	2.00E-15	-147.00	
Receiver System Noise Temp	degK	T(s)	100.00	20.00	
Boltzmann Constant	J/degK	k	1.38E-23	-228.60	
Noise Spectral Density	J/degK	N(o)	1.38E-21	-208.60	
Figure of Merit Gr/Ts		Gr/Ts	7.63E+01	18.83	
Free Space Loss		L(fs)	2.74E+19	194.38	
Total System Loss		L(ts)	2.75	4.40	
Receiver C/No Available	Hz	C/No(rcv)	5.25E+05	57.20	
Bit Error Rate		BER	1.00E-05	-50.00	
C/No Required	Hz	C/No(req)	2.63E+05	54.20	
Data Rate	bits/sec	R(b)	2.80E+04	44.47	
Eb/No Received		Eb/No(rcv)	18.76	12.73	
Eb/No Required		Eb/No(req)	9.40	9.73	
Link Margin			1.99526	3.00	