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Decibels

e Parameters range across many orders of magnitude (~1018 —
10-23)

e In the olden days, tended to lose precision with multiplications
e To make life easier, convert everything to dB
dB = 10log,, X

* Doubling of value =3 dB
e Can have dB(units) — dBW, dBm, etc.

e (Calculate link budgets by adding dB rather than multiplying

_base values
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Antennas

e Receive & transmit RF (radio frequency) energy

e Size/type selected directly related to frequency/required gain

Gain Pattern

Omni Antenna (idealized)

0 dBi

Isotropic antenna

Omni Antenna (typical)
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Representative Antenna Types

Axial mode helix and
its radiation pattern

Corrugated
horn
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Reflector

Horn
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Bifilar or quadirifilar Parabolic
helix and its pattern dish
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Biconical
horn
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Conical Microstrip

log spiral array

from Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford Univ. Press, 2005
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Orbit Considerations — Line of Sight
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Ground Station Coverage
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Ground Station Coverage
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Florida ground station with spacecraft altitudes 400, 800, and 1200 km
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Ground Station Coverage

Ground station elevation angles of 0, 10, and 20 degrees

Spacecroft altitude of 1200 kM
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Ground Station Coverage
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Effects of terrain and antenna limitations
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Ground Station Coverage

Hawaii (HAW3), Alaska (AGIS), Wallops Island (WPSA), Svalbard (SGIS), McMurdo (MCMS)

- 180 -160 - 140 -120 =100 -B0 -60 -40 -20 o 20 40 GO 20 100 120 140 160 180
30 50

80 £

l.o - X

60 1

S0+ §

404

30

204 |/

10+

-101

-201

-301

-4D+

U N I'V EERSSYIRENY =01 Space Communications

// MARYLAND 10 ENAE 483/788D — Principles of Space Systems Design



Frequency Bands
e 5-Band — 2-3 GHz

— Space operation, Earth exploration, Space research

e X-Band — 7-8 GHz

— Earth exploration, Space research

e Ku-Band — 13-15 GHz

— Space research
— Loss from rain

e Ka-Band — 23-28 GHz

— Inter-satellite, Earth exploration

VHF
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Types of Modulation

e Amplitude Modulation

- s(t) = A[1 + m(t)] cos(2TTft) MW*t /\/\>

— Easy to implement AM
— Poor noise performance AU%AVAVBV&M ‘ﬂﬂ%ﬂgﬁt}%ﬁ(’%ﬂv
* Frequency Modulation

FM
— x(t) = A cos[2T1f,.(f. + fom(T))dT] Wﬂﬂd]d% %%%W

— Requires frequency lock loop

PM
+ Phase Modulation AAATIN Y

— s(t) = A cos[21tf .t + Pm(t)]

— Requires phase lock loop

— Most digital modulation techniques involve PM
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Pulse Code Modulation Protocols
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Non-return-to-zero-level

"“One" is represented by one level.
"Zero" is represented by the other level.

Non-return-to-zero-mark
"One" is represented by a change in level.
"Zero" is represented by no change In level.

Non-return-to-zero-space
"One" is represented by no change in level.
"Zero" is represented by a change in level.

Bi-phase level (split phase)
Level change occurs at center of every bit period.
"One" is represented by a "one" level with the transition

to the "zero" level.

"Zero" is represented by a "zero" level with the transition

to the "one” level.

Bi-phase mark

Level change occurs at the beginning of every bit period.
"One" is represented by a midbit level change.

“Zero" is represented by no midbit level change.

Delay modulation-mark (Miller code)
"One” is represented by a level change midbit time.

"Zero" followed by a "zero" is represented by a level change

at the end of the first “zero” bit. No level change occurs
when a "zero" IS preceded by a "one."

from Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford Univ. Press, 2005
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Digital Modulation Techniques
e On-Off Keying (OOK)
e Frequency Shift Keying (FSK)
e Bi-Phase Shift Keying (BPSK)
* Quadrature Phase Shift Keying (QPSK),

* 71 E8
N

BPSK QPSK
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Polarization

e QOrientation of electric field vector

e Shape traced by the end of the vector at a fixed location, as observed along the
direction of propagation

e Some confusion over left hand /right hand conventions

Linear Linear Polarization Circular Polarization Circular Polarization
Polarization Horizontal Left hand Right hand
Vertical ﬂ #o°
X

(a)

-
- g
o
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The Problem: Verify the Link

Pointing

Loss

Polarization
Loss

S

Transmitter

Antenna

Power
Amplifier

Transmitter
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Information

Command &
Data Handling

(C&DH)

Compression

Data
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SPACE Receiver
CHANNEL

Galactic, Star,

v

Terrestrial Noise

Receiver
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Noise

Implementation
Loss

> | Receiver

»| Demodulator

v

Decoder

Information

Decompression

Satellite transmitter-to-receiver link with typical loss and noise sources
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Definition of Variables
| |, = reters to transmitting system

| |, = refers to recetving system

A, = Effective area of the antenna (mz)

¢ = Speed of light (2.998 x 10° m/sec)
f = Frequency (27/A)
G, = Gain of the component

P = Power at the antenna (W)

R = Tree-space distance between antennas (m)

n = Eftficiency of the component
A = Wavelength (m)
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Radio-Frequency Propagation
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Noise

e Any signal that isn’t part of the information sent

e Signal noise
— Amplitude noise — error in the magnitude of a signal
— Phase noise — error in the frequency / phase modulation

e System Noise
— Component passive noise
— Component active noise (amplifiers, mixers, etc...)

e Environmental Noise
— Atmospheric noise
— Galactic noise

— Precipitation

/ ¢t UNIVERSITY OF Space Communications
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Signal Noise

Amplitude Noise Phase Noise

Constellation
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System Noise

e All real components generate “thermal noise” due to the random
motion of atoms

e Passive devices’ thermal noise is directly related to the temperature of
the device, its bandwidth, and the frequency of operation

e Noise is generated by thermal vibration of bound charges
e A moving charge generates an electromagnetic signal

e Passive components include

— Resistive loads (power loads)

— Cables & other such things (like waveguides)
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Environmental Noise

e Rain loss, particularly in the Ku band
* Snow is not a problem

e Lightning

o Stars, galaxies, planets

¢ Human interference
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Noise Temperature

e Noise temperature provides a way of determining how much thermal
noise is generated in the receiving system

— The physical noise temperature of a device, T,, results in a noise power of P, =
KT,.B

K = Boltzmann’s constant = 1.38 x 10-3 J /K; K in dBW = -228.6 dBW /K
T,, = Noise temperature of source in Kelvin

B = Bandwidth of power measurement device in hertz
e Satellite communications systems work with weak signals, so reduce the
noise in the receiver as far as possible

— Generally the receiver bandwidth is just large enough to pass the signal

— Liquid helium can hold the physical temperature down
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Typical Receiver Noise Performance
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from Pisacane, Fundamentals of Space Systems, 2nd ed., Oxford Univ. Press, 2005
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S/N and NF

e Signal to Noise Ratio

— Most common description of the quantity of noise in a transmission

 Noise Figure

— S/N of input divided by S/N of output for a given device (or devices)
In a communications system

— Related to the noise temperature of a device:
T < RN )

T = reference temperature, usually 290 K

/ ¢t UNIVERSITY OF Space Communications
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System Noise Temperature

Example:

Gain = 0 dbi

" e ——-/\/\/\,—- LNA Downconverter IF AMP RECEIVER

~ |Loss=L NF ya =2 dB = NFpc=10dB=10 NF:=10dB =10 NFr=10dB =10
1 1.585 Gpc = 30 dB = Gr=30dB =1000 W Gr=30dB =1000 W
= L GLNA=35 dB = 1000 W
1 3162.3 W
E= 10393/10 ~ 0.5

Ts @ Reference Point
G @ Reference Point =0 dB

System Noise Temperature = T °K T, is reference temperature of each device = 290°K
(assumed)

T. szky i (1_E)To g (NFLNA _1)To _|_ (NFPC _1)T° L (NF'F _1)T° +...
- = & GLNA < GLNAGDC

T, = 50° + 290° + 2*0.585*290° + (2*10*290°/3162.3) * (1 + 1/1,000 + 1/1,000,000)
T, = 681.136°K = 28.33 dB
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BER and Eb/No

e The rate at which bits are corrupted beyond the capacity to reconstruct
them is called the BER (Bit Error Rate).

— ABER of less than 1 in 100,000 bits (a BER of 10-5) is generally desired for an
average satellite communications channel.

— For some types of data, an even smaller BER is desired (10-7).

e The BER is directly dependent on the E,,/N,, which is the ratio of Bit
Energy to Noise Density.

— Since noise density is difficult to control, this means that BER can be reduced by
using a higher power signal, or by controlling other parameters to increase the
energy transmitted per bit.

e The BER will decrease (fewer errors) if the E,,/ N, increases.
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Link Margin
e Received E, /N, minus required E, /N, (in dB)

e Required E,,/N, found by adding losses to the expected E, /N,
for the BER (which varies with encoding scheme used)

s = =2 + EOther System Losses

\NO /Req©d dB \NO / Theoretical for BER

\NO ) recieved 4g \NO / Req©d dB
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Diagram of a Link Budget
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Standard Link Budget Analysis

from David G. MacDonnell, "Communications Analysis of Potential Upgrades of NASA's Deep Space Network

and numerous other sources

Note: Only change values in boxed cells!

Speed of light m/sec
Frequency Hz
Wavelength m
Diameter of Transmitting Antenna m
Area of Transmitting Antenna mA2

Efficiency of Transmitting Antenna
Transmitter Gain

Transmitter Power W

EIRP W

slant range m
Power flux density W/mA2
Diameter of Receiving Antenna m

Area of Receiving Antenna mA2

Efficiency of Receiving Antenna

Receiver Gain

Carrier Power Received W
Receiver System Noise Temp degK
Boltzmann Constant J/degK

d(t)
A(t)

n(t)
G(t)

EIRP
d(r )
A(r)
n(r)
G(r)

T(s)

dB
3.00E+08 84.77

2.50E+09] 93.98

0.1200 -9.217

0.04] -14.18
0.00 -29.41
0.63] -2.04
6.25E-01  -2.04
11.47Y 10.60

/7.17E+00 8.55

5.00E+07|  76.99

2.28E-16 -156.42

4501  6.53
15.90 12.02
0.551 -2.60

/.63E+03 38.83
2.00E-15 -147.00

100.00Y 20.00

1.38E-23 -228.60



Transmitter Gain
Transmitter Power

EIRP

slant range

Power flux density

Diameter of Receiving Antenna
Area of Receiving Antenna
Efficiency of Receiving Antenna
Receiver Gain

Carrier Power Received
Receiver System Noise Temp
Boltzmann Constant

Noise Spectral Density
Figure of Merit Gr/Ts

Free Space Loss

Total System Loss

Receiver C/No Available

Bit Error Rate

C/No Required

Data Rate

Eb/No Received

Eb/No Required

Link Margin

W/mA2

mA2

degK
J/degK
J/degK

Hz

Hz
bits/sec

G(t)

P

EIRP

D

()

d(r )

A(r)

n(r)

G(r )

C

T(s)

k

N(o)
Gr/Ts
L(fs)

L(ts)
C/No(rcv)
BER
C/No(req)
R(b)
Eb/No(rcv)
Eb/No(req)

6.25E-01 -2.04

11.4707 10.60

/.17E+00 8.55

5.00E+07  76.99

2.28E-16 -156.42

450  6.53
15.90 12.02
0.55 -2.60

7.63E+03  38.83
2.00E-15 -147.00

100.00Y  20.00

1.38E-23 -228.60
1.38E-21 -208.60
7.63E+01 18.83
2.74E+19 194.38

2.75]  4.40

5.25E+05  57.20

1.00E-05{ -50.00

2.63E+05 54.20

2.80E+04 44.47

18.76 12.73

9.40" 9.73

1.99526 3.00



