Terramechanics: Wheel-Soil Interaction

o [ecture #27 — December 5, 2023

e Origin and nature of lunar soil
e Soil mechanics

e Wheel-soil interactions
— Soi1l compression
— Bulldozing
— Gravity etfects

e Slip
e (Lrousers
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Full Disclosure

e Terramechanics is a highly complex field of research

 The material covered here today is approximately 25% of
ENAE 788X, a graduate course in Planetary Surtace Robotics

e | have deleted ALL derivations, and am presenting this as a
“Quick Start” guide to rover wheel-soil interactions
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Regolith Creation Process

e Only “weathering” phenomenon on the moon is meteoritic
impact
e Weathering processes

— Comminution: breaking rocks and minerals into smaller particles

— Agglutination: welding fragments together with molten glass formed

by impact energy
— Solar wind spallation and implantation (minuscule)

— Fire fountaining (dormant)

 Resultis a fine powder composed ot small dust-like pieces
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Particle Size Distribution in Regolith
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Modeling Soil Reaction to a Wheel

Assume soil reaction is like a (nonlinear) spring

=
P = applied pressure

z = compression depth

k.mn = heuristic parameters

P

l lz
T
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More Detailed Soil Compression Equation

k
k= -1+ Lk
7 &

k. = modulus of cohesion of soil deformation

k. units =< N/m"t1) >
ks = modulus of friction of soil deformation
ks units =< N/m{"+2) >
b = wheel width

Ke

@ A Terramechanics
< )

MARYLAND 6 ENAE 483/788D — Principles of Space Systems Design




Lunar Soil Canonical Values

. | kg N

Soil density: p = 1600 — = y = 2470 —

m3 m3

n=1 N, = 32.23

k, = 1400 N/m? N, = 48.09

k; = 830,000 N/m’ N, = 33.27

$ = 33° = 0.576 rad K.=33.37

Cohesion ¢ = 170 N/m?* K¢ = 72.77
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Sources of Wheel-Soil Interaction Resistance

e Compression of soil by wheel loads

* Internal friction in drive system

. o~
........

o Effects of gravity on slopes

e Bulldozing of soil ahead of whe

from Gibbesch and Schafer, “Advanced and Simulation Methods of Planetary Rover Mobility on Soft Terrain” 8725 ES. A Workshop
on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, November, 2004

> UNIVERSITY OF Terramechanics

\-)/ MARYLAND 8 ENAE 483/788D — Principles of Space Systems Design




Compression Resistance (Lunar Soil)

e Depth of compression

2n+1

3 4

W

3 =1 (k. + bky)\/D

Z:

e Compression resistance

2(n+ 1)
1 3 W 2n + 1
—1 W
R, = ——(k. + bkt ——2—
n+1 (3 = n/D
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Apollo Lunar Roving Vehicle
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Relevant LRV Parameters

W, =370 lbs = 168 kg = 259 N (on Moon)

D=321n=0.813m
b=9 in=0.229 m

2
3

3 259 N
2 3 = 0.0151 m

N N
(1400 %+ (0.229 m)830000 2% ) 1/0.813 m

m

2
3
| N N
Units check: = = (m2) =m
o iEr
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Soil Bearing Limit

Sate weight on the soil

1
W,=A (cNC a w6 77 5 [: 2%9]\@)

%4

Safe soil pressure P, = e

A b = Wheel width (m)

¢ = Soil cohesion (Pa)

For our LRV example case, P, = 18,790 Pa

For W, = 1004 N, the minimum contact area is 534 cm? or € > 5.8 cm
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LRV Compression Resistance

4

1 N N\ [ 3059 N) \°
R.=— (1400 — +(0.229 m)820000 —3> ( ) ) — 283N
2 m m 24/0.813 m

N N\ N (w2 [N
Check units: (ﬁ_l_ m3> \/% — 173 213 =N
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Effects of Wheel Parameters
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Rolling and Gravitation Resistance
e Rolling resistance (tires, bearings, etc.)
R, = Wycy
W, = weight of vehicle

¢y = coetticient of internal friction (typically 0.05)

e (Gravitational resistance
R, = W, sinOsiope
e LRV examples (15° slope, W,=1004 N)
R, =50 N R, =260 N
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Bulldozing Resistance

e “Bulldozing” is the process of pushing soil up ahead of the
wheel

e Ranges from a small factor to a huge one, depending on soil

and wheel factors

........................................................................

from Gibbesch and Schafer, “Advanced and Simulation Methods of Planetary Rover Mobility on Soft Terrain” 8725 ES. A Workshop
on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, November, 2004
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Bulldozing Resistance

(General case:
R, — bsin (o + @)

~ 2sinacos ¢

All angles in radians!

(QZCKC -+ VZZKV)

E?ﬁ n 2 | s o\
b (2 ¢>—|—c€0 _1—|—tan(4 | 2)_

2
a = angle of attack of wheel in soil = cos™* (1 Z)

m3

N T
vzdensity Of SOll<_> 60 :Ztan2 (4 i)

For tracked vehicles, only the first term applies:

~ bsin (a + ¢)
~ 2sinacos ¢

Ry (ZZCKC - ”YZQK,Y)
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LRV Bulldozing Example (1)
¢ = 33° = 0.576 rad

- V7 & 2(1.812)
a = COS ] —— ) =cos ] — = 17.18° = 0.2999 rad
D 81.2

£, = ztan” — = 0.0051 m
R

, 1s length of soil ruptured by compression
Soil parameter values calculated on page 26

2 D

£ is the length of the wheel's circumference in contact with the soil

By 27
{ = — COS ] —— ) =12.18 cm
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LRV Bulldozing Example (2)

~ bsin (a + ¢)

= 2zcK. +v2°K
i 2 s1n o cos ¢ ( = i 7)
b r 2 | T 0\
. (2 gb>+c€() _1—|—tan(4 | 2)_
N N N N
(Rp) = cm (cm S\ ; cm2> + cm? o= ; cm®
B\ \\ cie cm3  cm

Ry = 94.98 4+ 0.000131 + 0.014 = 95.00 NV per leading wheel

Rp totar = 190.0 N
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Total LRV Rolling Resistance Estimate

e Compression resistance R. (4 wheels) 113 N
e Rolling resistance R, 50 N

e Bulldozing resistance R, (2 front wheels) 190 N
o Jotal resistance, flat ground 352 N
e (ravitational resistance, 15° slope 260 N
o Jotal resistance, 15° slope 613 N
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Revisiting Rolling Resistance and Slopes
LRV example - n =1

4
| 1 3Ww cos @ :
o e
24/D
R, = W,smd
R, = W,cos0 ¢

2
3

3 W,cos@
Z 4R e
2 (k. + bky\/D
Bulldozing equation on pg. 43 is unchanged, but solution is altered by changing value of z
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Slope Effects on LRV Rolling Resistance Factors

Rolling Resistance (N)
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Slope Effects on Total LRV Rolling Resistance

Rolling Resistance (N)
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Torque Transfer into Surface

e (Calculation up until now focus on passive rolling resistance —
how much force would be require to push the vehicle

e Need to calculate the ability of the wheel to convert torque of
the drive actuator into soil thrust to propel the vehicle

e Strongly dependent on slip ratio
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Wheel Slip Ratio

e Wheel circumferential speed wr will never exactly match

vehicle speed V
v

o Lhe difference is slip ratio: s = 1 — —
r

e Ifwr=Vthens=0

e Ifwr> Vthen0 < s <1

e [fawr>V(orV=0)thens =1

e If wr < V (deceleration)then —1 <5 <0
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Tractive Force per (Smooth) Wheel

H = (Ac+ Wtan ¢) |1 _§ (1 B eig)]

A = area of contact = b?

¢ = soil cohesion

¢ = soil angle of internal friction

s = wheel slip ratio

K = shear deformation modulus

D 2
¢ = length of contact patch = — cos™ (1 — —Z)

2 D
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rousers (on Tracked Vehicle)
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Minimum Grouser Condition
Ax

U

tm’m contact —

tgr()user contact —

Y
oy,

tgrouser contact S trim contact

W
v < —Ax
U
U
st 1 > v =wr(l — s)
wWr
1
Y < Ax
r(l — s)
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Required Grouser Spacing

70 - Number of Grousers

Angle between grousers (deg)
N W D U1 (@)
) ) ) ) )

—
-
I

o

Grouser Height (cm)
Slip ratio =00 =0.1 0.2 =—0.3 =—0.4 0.5
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Number of Grousers in Ground Contact

o= oy B AT R 1) r = 40.6 cm

Number of grousers = N

2
Angle between grousers = ¢ = Nﬂ

27T

N
27T

N/

Distance between grousers = £, = ¢r =

Number of grousers in ground contact = N, =

LRV example: choose N = 16
N,=13 =1

/@ UENEISVEES Sy = O Terramechanics
< )

MARYLAND 3] ENAE 483/788D — Principles of Space Systems Design



Tractive Force per Wheel (With Grousers)

2h h b K s
H=|bfc|1+— |N,+ Wtang | 1 + 0.64— arctan — 1——(1—6 K)
b g b h st

A = area of contact = b/

¢ = soil cohesion = 0.017 N/cm?”

¢ = soil angle of internal friction = 35°
s = wheel slip ratio (typ. 0.02-0.05)

K = shear deformation modulus = 1.8 em

D 2
¢ = length of contact patch = 3 cos™" (1 5)

h = height of grouser
N, = number of grousers in contact with ground
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Basic Equation of Vehicle Propulsion
DP: Drawbar pull (residual drive force)

H: Maximum tractive force of wheels
Re: Compaction resistance

Rp:  Bulldozing resistance

Re:  Gravitational resistance

R:: Rolling resistance (internal)

DP:H—(RC—l—Rb—I—Rg—I—RT)
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Drawbar Pull vs. Slip (per wheel)

N
o

Wheel Drawbar Pull (N)
N
-

Slip ratio §

—Smooth wheel —1-cm grousers
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Some Notes on Terramechanics

e This is the simplest approach to calculating wheel-soil
interactions

 Real-world issues not modeled include
— Non-homogeneities
— Soil layering
— Soil transport under wheel

e This technique is conservative in estimating drawbar pull

e Braking is more complicated than sticking s < 0 into the

equation for H, but beyond the scope for this lecture
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