ENAE 488R Project Statement

- Design, build, test, and operate a small remotely operated rover to participate in the 2014 RoboOps competition
- Rover must be capable of rapid and highly robust maneuverability in all terrains at the JSC Rockyard
- Rover must be capable of collecting samples (rocks and small dolls) for points
- Rover must be controlled via cellular data link(s) from home university

Goals of ENAE 488R

- Learn the basic skills of robot design & operation
- Simulate the cooperative group engineering environment of the aerospace profession
- Develop experience and skill sets for working in teams
- Utilize knowledge from other classes in real-world product development process
- Perform product development under tight constraints in time, funding, and external requirements

2

ENAE 488R Grading

- Grading will be based on quantity and quality of involvement in class
 - Attendance at regularly scheduled meetings
 - Involvement in design/build/test functions

3

- Volunteering for support activities (e.g., editing final report, social media, graphics creation
- Each student will prepare a monthly statement of personal accomplishments and plans for next month
- Peer evaluations

RoboOps Requirements

- Rovers must fit within a 1x1x0.5 meter volume to start and deploy to operational configuration
- Rover must be <45 kg; tactical advantages go to lighter rovers
- Rovers must operate without local interaction for one hour
- Rovers must be controlled via cell networks from participating university's campus
- Rovers collect colored rocks and small dolls to score points

4

Competition Deadlines

- March 17 Midproject Review
 - Must present video evidence of driving and arm manipulation
 - Gateway to receiving rest of funds
- June 3-5 Competition at JSC Rockyard

5

Competition Scoring


• 70% - performance during official run

6

- 10% technical paper
- 10% poster presentation
- 5% blog/social media site
- 5% streaming live video and recording for later showing

UMd Entry 2013 - Demeter

UNIVERSITY OF MARYLAND

Arizona State University 2013

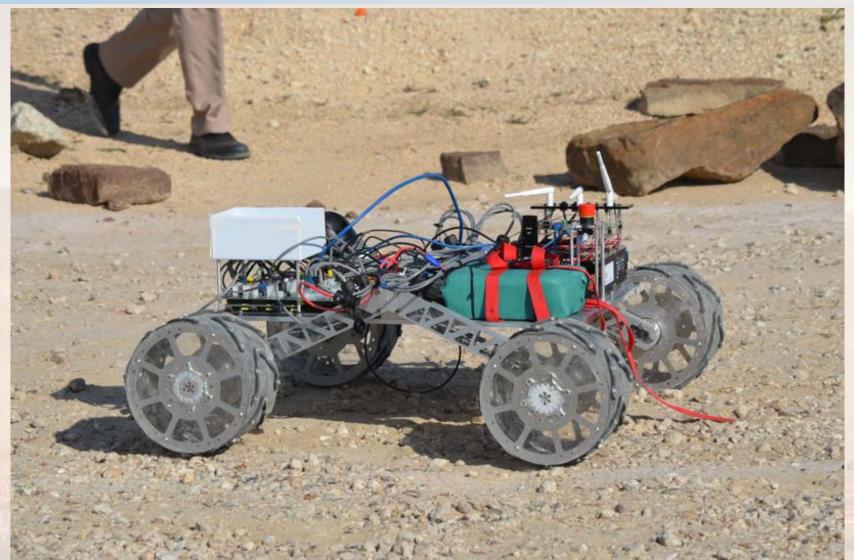
8

Florida State University 2013

9

University of Massachusetts-Lowell 2013

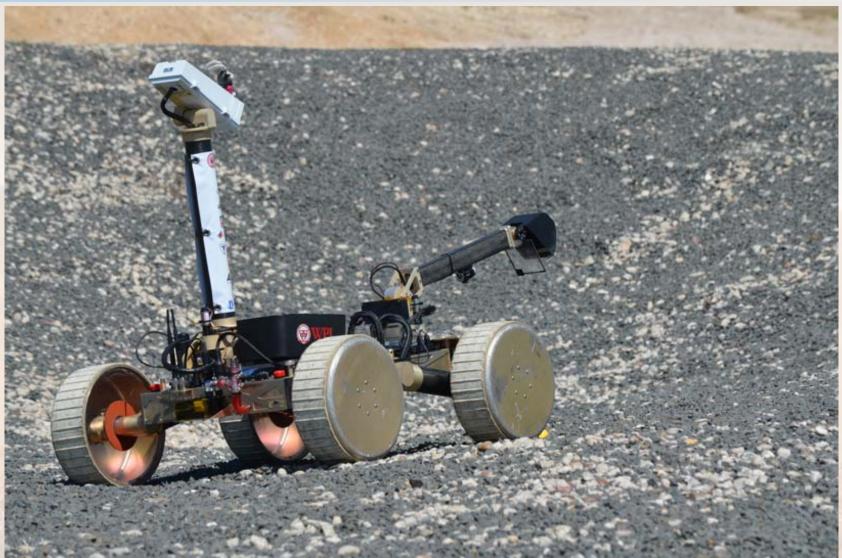
10


University of West Virginia 2013

11

University of Nebraska-Lincoln 2013

12


University of Utah 2013

13

Worcester Polytechnic Institute 2013

14

RoboOps 2013 Weigh-In

B.CI	/		1/20	2013	11 June
	RASC-AL	ROBO	OPS		
	TEAM:	ROVER MASS:	DATE/TIME:	NOTES:	1
		1° kg 2° kg	Mis		
	WPID	45.6.45	NED 8:30-9:30		7-
	FSU @	45 45	NED 9.45-10-45	1000	
	UND 3	44 43.8	NED 11:00-12:00		IN CONTRACTOR
	WVU (4)	39 38.6	NED 1:30-2:30		
-	Nebraska (5)	43 36.2	9:00-10:00	Lost Arm before second Weigh In	
	UMASS-LOWELE	37.6 37.2 1	10.15-11:15		
	ASU D	211 200	THURS. 11.30-12:30	Rover was going over side of Mt Cosmo team was forced to stop it	
	UTAH 8	COMPANY OF A DATA SALES	2:00-3:00pm	Rover got stuck on big rack in Mars lard	
			7	121	
		5	-	_/	

15

UNIVERSITY OF MARYLAND

Absolute Must-Change Items

- Larger wheels
- Smaller (lighter) battery
- Rugged computer
- Vibration isolation
- Encoders in drive wheels (active traction control)
- More robust, cleaner kinematics arm

16

- Encoders in arm (inverse kinematics/cartesian)
- Scripted automation
- Better cameras

Non-Negotiable Groundrules

- No legs, tracks, or other weird mobility systems
- Demeter will be returned to and kept in operating condition as software and crew training testbed
- Persephone weight target: 35 kg
- Persephone absolute weight limit: 40 kg
- Software will implement and use ROS (Robot Operating System - open source)
- Test early, test often. When in doubt, test.
- System must be in competition configuration by end of Spring term (May 21)
 UNIVERSITY OF MARYLAND
 17

Paths to Winning

- Robust design no failures at the last minute
- Light weight go as late as possible
- Well tested skilled operators and proven code
- Fast speeds get from place to place easily
- All terrain if you can make it through the loose sand and on hills, you have it made
- Fast sampling spend your time driving, not picking up rocks
- Two communication paths one dedicated to survey and planning, one to rover operations
- Test in bright sunlight! Test! Test! Test!
 UNIVERSITY OF
 MARYLAND
 18
 Test! Test! Test! Test!
 Overview of Robo-Ops Competition
 ENAE 488R Planetary Rover Development