Terramechanics

- Origin and nature of lunar soil
- Soil mechanics
- Rigid wheel mechanics
Substitute Lectures

- F 9/19 1:00-2:15
- F 9/26 1:00-2:15
- F 10/3 1:00-2:15
- M 10/6 2:00-3:15
- W 10/15 2:00-3:15
- M 10/20 2:00-3:15
- M 10/27 2:00-3:15
- F 11/7 1:00-2:15

All lectures in ITV 1111
Lunar Regolith

• Broken down from larger pieces over time

• Major constituents
 - Rock fragments
 - Mineral fragments
 - Glassy particles

• Local environment
 - 10^{-12} torr
 - Meteorites at $>10^5$ m/sec
 - Galactic cosmic rays, solar particles
 - Temperature range $+250^\circ F - -250^\circ F$
Regolith Creation Process

- Only “weathering” phenomenon on the moon is meteoritic impact!

- Weathering processes
 - Comminution: breaking rocks and minerals into smaller particles
 - Agglutination: welding fragments together with molten glass formed by impact energy
 - Solar wind spallation and implantation (miniscule)
 - Fire fountaining (dormant)
JSC-1 Simulant

- Ash vented from Merriam Crater in San Francisco volcano field near Flagstaff, AZ
- K-Ar dated at 150,000 years old ± 30,000
- Major constituents SiO_2, TiO_2, Al_2O_3, Fe_2O_3, FeO, MgO, CaO, Na_2O, other <1%
- Represents low-Ti regolith from lunar mare
- MLS-1 simulant (U.Minn.) preferred for simulation of highland material
Soil Pressure vs. Deflection
Derivations

Displacement Energy $\frac{E}{A} = \int \frac{F}{A} dz = \int P dz$

If we sink to a depth z_0,$$
\frac{E}{A} = \int_0^{z_o} P dz = \int_0^{z_o} k z^n dz = k \frac{z_0^{n+1}}{n + 1}
$$

Total Energy $\frac{E}{A} = \frac{E}{A} bd = k \frac{z_0^{n+1}}{n + 1} bd$

Given a force resisting rolling $\equiv R$, the energy required to roll a distance d is

$E_{\text{roll}} = Rd$

$E_{\text{roll}} = E_{\text{displacement}} \Rightarrow Rd = \frac{E}{A} bd$

Generic case:

$P = k z^n; \frac{E}{A} = k \frac{z_0^{n+1}}{n + 1}; R = k b \frac{z_0^{n+1}}{n + 1}$