Terramechanics

- Origin and nature of lunar soil
- Soil mechanics
- Rigid wheel mechanics

Notes about Revised Course Schedule

- No class next week (9/11 and 9/13)
- Makeup lectures to be announced

Lunar Regolith

- Broken down from larger pieces over time
- Major constituents
- Rock fragments
- Mineral fragments
- Glassy particles
- Local environment
-10^{-12} torr ($\left.=1.22 \times 10^{-10} \mathrm{~Pa}=1.93 \times 10^{-14} \mathrm{psi}\right)$
- Meteorites at velocities $>10^{5} \mathrm{~m} / \mathrm{sec}$
- Galactic cosmic rays, solar particles
- Temperature range $+250^{\circ} \mathrm{F}--250^{\circ} \mathrm{F}$

Regolith Creation Process

- Only "weathering" phenomenon on the moon is meteoritic impact!
- Weathering processes
- Comminution: breaking rocks and minerals into smaller particles
- Agglutination: welding fragments together with molten glass formed by impact energy
- Solar wind spallation and implantation (miniscule)
- Fire fountaining (dormant)

JSC-1 Simulant

- Ash vented from Merriam Crater in San Francisco volcano field near Flagstaff, AZ
- K-Ar dated at 150,000 years old $\pm 30,000$
- Major constituents $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{FeO}$, $\mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, other $<1 \%$
- Represents low-Ti regolith from lunar mare
- MLS-1 simulant (U.Minn.) preferred for simulation of highland material

Wheel-Soil Interaction

Wheel rolling over soil does work
 - Compression
 - "Bulldozing"

from Gibbesch and Schafer, "Advanced and Simulation Methods of Planetary Rover Mobility on Soft Terrain" 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, November, 2004
U N IVERSITY O F
MARYLAND
Terramechanics

Soil Testing Apparatus

Bevameter (force vs. displacement)

Shear deformation modulus \mathbf{K}

Terramechanics

Soil Characterization - Direct Shear

Modeling Soil Reaction to a Wheel

Assume soil reaction is like a (nonlinear) spring

$$
P=k z^{n}
$$

$P=$ applied pressure
$z=$ compression depth
$k, n=$ heuristic parameters

Effects of Soil Mechanics

Soil Penetration Depth z

Wheel-Soil Interactions

area of compressed soil $A=b d$
Displacement Energy $\frac{E}{A}=\int \frac{F}{A} d z=\int P d z$

$$
\frac{E}{A}=\int_{0}^{z_{o}} P d z=\int_{0}^{z_{o}} k z^{n} d z=k \frac{z_{o}^{n+1}}{n+1}
$$

Rolling Resistance

$$
\text { Total Energy } \frac{E}{A} A=\frac{E}{A} b d=k \frac{z_{o}^{n+1}}{n+1} b d
$$

Given a force resisting rolling $\equiv R$,
the energy required to roll a distance d is

$$
\begin{gathered}
E_{\text {roll }}=R d \\
E_{\text {roll }}=E_{\text {displacement }} \Rightarrow R d=\frac{E}{A} b d
\end{gathered}
$$

Rolling Resistance

$$
\text { For } n=1: P=k z ; \frac{E}{A}=k \frac{z_{o}^{2}}{2} ; R=\frac{1}{2} k b z_{o}^{2}
$$

For $n=\frac{1}{2}: P^{2}=k^{2} z ; \frac{E}{A}=\frac{2}{3} k z_{o}^{\frac{3}{2}} ; R=\frac{2}{3} k b z_{o}^{\frac{3}{2}}$

$$
\text { For } n=0: P=k ; \frac{E}{A}=k z_{o} ; R=k b z_{o}
$$

Generic case: $P=k z^{n} ; \frac{E}{A}=k \frac{z_{o}^{n+1}}{n+1} ; R=k b \frac{z_{o}^{n+1}}{n+1}$

Soil Displacement Calculations

$$
\begin{array}{r}
R-\int_{0}^{\theta_{o}} d F \sin \theta=0 \\
-W+\int_{0}^{\theta_{o}} d F \cos \theta=0 \\
d F=P b \quad d F \cos \theta=-P b d x \\
d F \sin \theta=P b d z
\end{array}
$$

$$
R=\int_{0}^{\theta_{o}} P b d z \quad W=-\int_{0}^{\theta_{o}} P b d x
$$

In general, $P=k x^{n}$

$$
W=-\int_{0}^{z_{o}} b k z^{n} d x
$$

Soil Displacement Calculations

$$
\begin{gathered}
\text { wheel width } b \\
x^{2}=\left(\frac{D}{2}\right)^{2}-\overline{A B}=\frac{D}{2}-\left(z_{o}-z\right) \\
=\left(\frac{D}{2}\right)^{2}-\left(\frac{D}{2}\right)^{2}-\left[\frac{D}{2}-\left(z_{o}-z\right)\right]^{2} \\
x^{2}=\left[D-\left(z_{o}-z\right)\right]\left(z_{o}-z\right)-\left(z_{o}-z\right)^{2}
\end{gathered}
$$

Soil Compression Calculations

But $D \gg z_{o}-z$

$$
x^{2} \approx D\left(z_{o}-z\right) \Rightarrow 2 x d x=-D d z
$$

so from $W=-\int_{0}^{z_{o}} b k z^{n} d x$ we get $W=-\int_{0}^{z_{o}} b k z^{n} \frac{-D}{2 x} d z$

$$
\begin{gathered}
W=-b k \int_{0}^{z_{o}} z^{n}\left(\frac{-D}{2 \sqrt{D} \sqrt{z_{o}-z}}\right) d z \\
W=b k \int_{0}^{z_{o}} z^{n}\left(\frac{\sqrt{D} d z}{2 \sqrt{z_{o}-z}}\right) d z
\end{gathered}
$$

Soil Displacement Calculations

$$
\begin{aligned}
& \text { Define } z_{o}-z \equiv t^{2} \Rightarrow d z=-2 t d t \\
& \qquad W=b k \sqrt{D} \int_{0}^{\sqrt{z_{o}}}\left(z_{o}-t^{2}\right)^{n} d t
\end{aligned}
$$

Taylor Series expansion $\left(z_{o}-t^{2}\right)^{n} \cong z_{o}^{n}-n z_{o}^{n-1} t^{2}+\cdots$

$$
\begin{gathered}
W \approx \frac{b k \sqrt{D z_{o}}}{3} z_{o}^{n}(3-n) \\
\text { for } n=1 \Rightarrow W=\frac{2}{3} b k z_{o} \sqrt{D z_{o}} \\
\text { for } n=\frac{1}{2} \Rightarrow W=\frac{5}{6} b k z_{o} \sqrt{D} \\
\text { for } n=0 \Rightarrow W=b k \sqrt{D z_{o}}
\end{gathered}
$$

Rolling Resistance as $f(\mathbf{W})$

$$
\begin{gathered}
\text { for } n=0 \Rightarrow W=b k \sqrt{D z_{o}} \Rightarrow z_{o}=\left(\frac{W}{b k}\right)^{2} \frac{1}{D} \\
R=k b z_{o} \Rightarrow R=\frac{k b}{(k b)^{2}} \frac{W^{2}}{D} \Rightarrow R=\frac{W^{2}}{k b D} \\
\text { for } n=\frac{1}{2} \Rightarrow W=\frac{5}{6} b k z_{o} \sqrt{D} \Rightarrow z_{o}=\frac{6}{5} \frac{W}{b k \sqrt{D}} \\
R=\frac{2}{3} k b z_{o}^{\frac{3}{2}} \Rightarrow R=\frac{2}{3} k b\left(\frac{6}{5} \frac{W}{k b \sqrt{D}}\right)^{\frac{3}{2}}=\frac{2}{3}\left(\frac{6}{5}\right)^{\frac{3}{2}} \frac{W^{\frac{3}{2}}}{\sqrt{k b} D^{\frac{3}{4}}} \\
R=0.876 \frac{W^{\frac{3}{2}}}{\sqrt{k b} D^{\frac{3}{4}}}
\end{gathered}
$$

Terramechanics ENAE 788X - Planetary Surface Robotics

Rolling Resistance as $f(\mathbf{W})$

$$
\begin{gathered}
\text { for } n=1 \Rightarrow W=\frac{2}{3} b k z_{o}^{\frac{3}{2}} \sqrt{D} \Rightarrow z_{o}^{2}=\left(\frac{3 W}{2 k b \sqrt{D}}\right)^{\frac{4}{3}} \\
R=\frac{1}{2} k b z_{o}^{2} \Rightarrow R=\frac{1}{2} k b\left(\frac{3 W}{2 k b \sqrt{D}}\right)^{\frac{4}{3}}=\frac{1}{2}\left(\frac{3}{2}\right)^{\frac{4}{3}}\left(\frac{W^{4}}{k b D^{2}}\right)^{\frac{1}{3}} \\
R=0.859\left(\frac{W^{4}}{k b D^{2}}\right)^{\frac{1}{3}}
\end{gathered}
$$

Rolling Resistance as $f(W)$ (Generic)

$$
\begin{gathered}
W=\frac{b k \sqrt{D z_{o}}}{3} z_{o}^{n}(3-n)=\frac{b k \sqrt{D}}{3} z_{o}^{n+\frac{1}{2}}(3-n) \\
z_{o}^{n+\frac{1}{2}}=\frac{3}{(3-n)} \frac{W}{b k \sqrt{D}} \\
z_{o}^{n+1}=\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{n+1}{n+\frac{1}{2}}}=\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}} \\
R=\frac{b k}{n+1} z_{o}^{n+1}=\frac{b k}{n+1}\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}} \\
R=\frac{1}{n+1}\left(\frac{3}{3-n} \frac{W}{\sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}}\left(\frac{1}{b k}\right)^{\frac{1}{2 n+1}}
\end{gathered}
$$

More Detailed Soil Compression Equation

$$
k=\frac{k_{c}}{b}+k_{\phi}
$$

$k_{c}=$ modulus of cohesion of soil deformation

$$
k_{c} \text { units } \Rightarrow<N / m^{(n+1)}>
$$

$k_{\phi}=$ modulus of friction of soil deformation

$$
\begin{gathered}
k_{\phi} \text { units } \Rightarrow<N / m^{(n+2)}> \\
b=\text { wheel width } \\
P=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
\end{gathered}
$$

Soil Characteristics

Soil type	n	$k_{c}\left\langle\frac{N}{m^{n+1}}\right\rangle$	$k_{\phi}\left\langle\frac{N}{m^{n+2}}\right\rangle$
Dry Sand	1.1	990	$1,528,000$
Lunar Regolith	1.0	1400	820,000
Sandy Loam	0.7	5270	$1,515,000$
Sandy Loam (MER-B)	1.0	28,000	$7,600,000$
Slope Soil (MER-B)	0.8	6800	210,000
Clay (Earth)	0.5	13,190	692,200

Terramechanics
ENAE 788X - Planetary Surface Robotics

Equations for Compression Resistance

$$
\begin{gathered}
z=\left(\frac{3 W_{w}}{(3-n) b k \sqrt{d}}\right)^{\frac{2}{2 n+1}} \\
W_{w}=\text { weight on wheel } \\
d=\text { wheel diameter }
\end{gathered}
$$

$$
R_{c}=\left(\frac{b k}{n+1}\right) z^{n+1}
$$

$R_{c}=$ compression resistance (per wheel)

Soil Compression - Reece Formulation

$$
P=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

Problem is that k_{c} and k_{ϕ} have variable dimensions, based on n

$$
\begin{aligned}
& k_{c} \text { units } \Rightarrow<N / m^{(n+1)}> \\
& k_{\phi} \text { units } \Rightarrow<N / m^{(n+2)}>
\end{aligned}
$$

Reece Formulation: nondimensionalize by b

Compression Resistance (Lunar Soil)

$$
\begin{gathered}
R_{c}=\frac{1}{n+1}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{2 n+1}}\left(\frac{3 W_{w}}{(3-n) \sqrt{d}}\right)^{\frac{2(n+1)}{2 n+1}} \\
n=1 \\
k_{c}=0.14 \mathrm{~N} / \mathrm{cm}^{2} \\
k_{\phi}=0.827 \mathrm{~N} / \mathrm{cm}^{3} \\
R_{c}=\frac{1}{2}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{3}}\left(\frac{3 W_{w}}{2 \sqrt{d}}\right)^{\frac{4}{3}}
\end{gathered}
$$

Apollo Lunar Roving Vehicle Example

$$
\begin{gathered}
z=\left(\frac{3 * 253}{2(0.14+17.4 * 0.827) \sqrt{82}}\right)^{\frac{2}{3}}=2.03 \mathrm{~cm} \\
R_{c}=\frac{1}{2}(0.14+17.4 * 0.827)^{\frac{-1}{3}}\left(\frac{3 * 253}{2 \sqrt{82}}\right)^{\frac{4}{3}}=29.8 \mathrm{~N}
\end{gathered}
$$

check units -

$$
\left(\frac{N^{-1 / 3}}{c m^{-2 / 3}}\right)\left(\frac{N^{4 / 3}}{c m^{2 / 3}}\right)=N
$$

Rolling and Gravitation Resistance

- Rolling resistance (tires, bearings, etc.)

$$
\begin{gathered}
R_{r}=W_{v} c_{f} \\
W_{v}=\text { weight of vehicle } \\
c_{f}=\text { coefficient of friction (typ. } 0.05 \text {) }
\end{gathered}
$$

- Gravitational resistance

$$
R_{g}=W_{v} \sin \theta_{\text {slope }}
$$

- LRV examples $\left(15^{\circ}\right.$ slope)

$$
R_{r}=51 N \quad R_{g}=262 N
$$

Bulldozing Resistance

$R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}+\gamma z^{2} K_{\gamma}\right)+\frac{\pi \ell_{o}^{3} \gamma(90-\phi)}{540}+\frac{c \pi \ell_{o}^{2}}{180} \tan \left(45+\frac{\phi}{2}\right)$

$$
\begin{aligned}
& \alpha=\text { angle of attack of wheel in soil } \equiv \cos ^{-1}\left(1-\frac{2 z}{D}\right) \\
& \gamma=\text { density of soil }\left\langle\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right\rangle \\
& \ell_{o}=\text { length of soil rupture } \equiv z \tan ^{2}\left(45-\frac{\phi}{2}\right)
\end{aligned}
$$

Bulldozing Resistance

- "Bulldozing" is the process of pushing soil up ahead of the wheel
- Ranges from a small factor to a huge one, depending on soil and wheel factors
- Will be covered in detail in a later lecture

Tractive Force per Wheel (No Grousers)

$$
\begin{aligned}
& H=\left[A C_{b}+W_{w} \tan \phi_{b}\right]\left[1-\frac{K}{\ell}\left(1-e^{\frac{-s \ell}{K}}\right)\right] \\
& \\
& A=\text { area of contact } \\
& C_{b}=\text { coefficient of soil/wheel cohesion } \\
& \phi_{b}=\text { wheel/soil friction angle } \\
& s=\text { wheel slip ratio } \\
& K=\text { coefficient of soil slip } \\
& \ell=\text { length of contact patch }
\end{aligned}
$$

Tractive Force per Wheel (With Grousers)

$H=\left[b \ell C_{b}\left(1+\frac{2 h}{b}\right) N_{g}+W \tan \phi_{b}\left(1+0.64 \frac{h}{b} \arctan \frac{b}{h}\right)\right]\left[1-\frac{K}{\ell}\left(1-e^{-\frac{8 \ell}{K}}\right)\right]$
$A=$ area of contact $\cong b \ell$
$C_{b}=$ soil/wheel cohesion $=0.017 \mathrm{~N} / \mathrm{cm}^{2}$ $\phi_{b}=$ wheel/soil friction angle $=35^{\circ}$ $s=$ wheel slip ratio (typ. 0.02-0.05)
$K=$ coefficient of soil slip $=1.8 \mathrm{~cm}$
$\ell=$ length of contact patch $=\frac{D}{2} \cos ^{-1}\left(1-\frac{2 z}{D}\right)$
$h=$ height of grouser
All values typical for lunar soil

Effect of Soil Thrust Fraction

Soil Thrust Fraction $\left[1-\frac{K}{\ell}\left(1-e^{-\frac{s \ell}{K}}\right)\right]$

Terramechanics
ENAE 788X - Planetary Surface Robotics

Basic Equation of Vehicle Propulsion

$$
D P=H-\left(R_{c}+R_{b}+R_{g}+R_{r}\right)
$$

- DP: Drawbar pull (residual drive force)
- H: Maximum tractive force of wheels
- R_{c} : Compaction resistance
- R_{b} : Bulldozing resistance
- R_{g} : Gravitational resistance
- R_{r} : Rolling resistance (internal)

Example: Wheelbarrow (Single) Wheel

$$
R=\left(k_{c}+k_{\phi} b\right)^{\frac{-1}{2 n+1}} W^{\frac{2(n+1)}{2 n+1}} \frac{1}{n+1}\left(\frac{3}{3-n}\right)^{\frac{2(n+1)}{2 n+1}} D^{\frac{-(n+1)}{2 n+1}}
$$

Effects of Wheel Parameters

Terramechanics
ENAE 788X - Planetary Surface Robotics

Effect of Soil "Spring Constant" on R/W

Terramechanics

Soil Type and Wheel Load

Terramechanics
ENAE 788X - Planetary Surface Robotics

Soil Type and Specific Resistance

Effect of Wheel Diameter and Width

Effect of Slope

Terramechanics
ENAE 788X - Planetary Surface Robotics

Wheel Test Apparatus

- Wheel testing done at MIT Field and Space Robotics Laboratory
- Independent control of motion and wheel velocity provides controllable slip

$$
s=1-\frac{V}{\omega r}
$$

Terramechanics

Wheel Torque vs. Time

$\varphi=0.24$

Sinkage vs. Slip Ratio

Sinkage vs. Slip Ratio

Drawbar Pull vs. Slip Ratio

Terramechanics
ENAE 788X - Planetary Surface Robotics

Motor Torque vs. Slip Ratio

Motor Torque vs. Slip Ratio

