Robotic Mobility - Above the Surface

- Free Space
- Relative Orbital Motion
- Airless Major Bodies (moons)
- Gaseous Environments (Mars, Venus, Titan)
- Lighter-than-"air" (balloons, dirigibles)
- Heavier-than-"air" (aircraft, helicopters)

Propulsive Motion in Free Space

- Basic motion governed by Newton's Law $F=m a$ (actually, $\vec{F}=m \overrightarrow{\ddot{x}}$)
- Over a distance d and time t , assuming the motion is predominately coasting,

$$
\Delta V=2 \frac{d}{t}
$$

(required to accelerate and decelerate)

- The rocket equation (relates propellant to $\Delta \mathrm{V}$)

$$
\frac{m_{\text {final }}}{m_{o}}=e^{-\frac{\Delta V}{V_{\text {exhaust }}}}
$$

Cost of Propulsive Maneuvering

- Assuming $\Delta V \ll V_{\text {exhaust }}$
- Use the Taylor's Series expansion of e

$$
\frac{m_{\text {final }}}{m_{o}} \approx 1-\frac{\Delta V}{V_{\text {exhaust }}}
$$

- Since $\mathrm{m}_{\mathrm{o}}=\mathrm{m}_{\text {initial }}=\mathrm{m}_{\text {prop }}+\mathrm{m}_{\text {final }}$,

$$
\frac{m_{\text {prop }}}{m_{o}} \approx \frac{2}{V_{\text {exhaust }}} \frac{d}{t} \text { or } \frac{m_{\text {prop }}}{m_{o}} \approx 2 \frac{V_{\text {travel }}}{V_{\text {exhaust }}}
$$

Hill's Equations (Proximity Operations)

Linearized equations of motion relative to a target in circular orbit in a rotating Cartesian reference frame

$$
\begin{aligned}
& \ddot{x}=3 n^{2} x+2 n \dot{y}+a_{d x} \\
& \ddot{y}=-2 n \dot{x}+a_{d y} \\
& \ddot{z}=-n^{2} z+a_{d z} \\
& n=\sqrt{\frac{\mu}{a^{3}}}
\end{aligned}
$$

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993
$a_{d x}, a_{d y}, a_{d z}$ are disturbing accelerations (e.g., thrust, solar pressure)
Robotic Mobility - Above the Surface

Clohessy-Wiltshire ("CW") Equations

Force-free solutions to Hill's Equations

$$
\begin{aligned}
& x(t)=[4-3 \cos (n t)] x_{o}+\frac{\sin (n t)}{n} \dot{x_{o}}+\frac{2}{n}[1-\cos (n t)] \dot{y}_{o} \\
& y(t)=6[\sin (n t)-n t] x_{o}+y_{o}-\frac{2}{n}[1-\cos (n t)] \dot{x_{o}}+\frac{4 \sin (n t)-3 n t}{n} \dot{y_{o}}
\end{aligned}
$$

$$
\dot{x}(t)=3 n \sin (n t) x_{o}+\cos (n t) \dot{x}_{o}+2 \sin (n t) \dot{y}_{o}
$$

$$
\begin{gathered}
\dot{y}(t)=-6 n[1-\cos (n t)] x_{o}-2 \sin (n t) \dot{x}_{o}+[4 \cos (n t)-3] \dot{y}_{o} \\
z(t)=z_{o} \cos (n t)+\frac{\dot{z}_{o}}{n} \sin (n t) \\
\dot{z}(t)=-z_{o} n \sin (n t)+\dot{z}_{o} \cos (n t)
\end{gathered}
$$

"V-Bar" Approach

"R-Bar" Approach

- Approach from along the radius vector (" R bar")
- Gravity gradients decelerate spacecraft approach velocity - low contamination approach
- Used for Mir, ISS docking approaches

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001
Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Hopping (Airless Flat Planet)

Use $F=m a$ for vertical motion

$$
\begin{gathered}
\dot{V}_{v}=-g \quad h=V_{v} t-\frac{1}{2} g t^{2} \\
t_{f l t}=2 V_{v} / g
\end{gathered}
$$

Constant velocity in horizontal direction produces

$$
\begin{aligned}
& d=V_{h} t_{f l t}=2 \frac{V_{h} V_{v}}{g} \\
& V_{h}=V \cos \gamma ; V_{v}=V \sin \gamma \\
& d=2 \frac{V^{2} \sin \gamma \cos \gamma}{g}=\frac{V^{2}}{g} \sin (2 \gamma)
\end{aligned}
$$

Hopping (Airless Flat Planet)

V_{v}, h

$$
\xrightarrow{\stackrel{v}{\longrightarrow} V_{h}, d \quad \text { Horizontal distance is maximized when } \sin (2 \gamma)} \begin{array}{r}
\gamma_{o p t}=\frac{\pi}{2}=45^{\circ} \quad d_{\max }=\frac{V^{2}}{g}
\end{array}
$$

$$
V=\sqrt{g d} \quad \Delta V_{t o t a l}=2 V=2 \sqrt{g d}
$$

$$
h_{\max }=V_{v} \frac{V_{v}}{g}-\frac{1}{2} g\left(\frac{V_{v}}{g}\right)^{2} \quad V_{v}=\frac{V}{\sqrt{2}}
$$

$$
h_{\max }=\frac{V^{2}}{4 g}=\frac{\sqrt{g d}^{2}}{4 g}=\frac{d}{4}
$$

An Example of Propulsive Gliding

Robotic Mobility - Above the Surface MARYLAND

Propulsive Gliding (Airless Flat Planet)

Assume horizontal velocity is V

$$
\Delta V_{h}=2 V
$$

(includes acceleration and deceleration)

$$
t_{f l t}=d / V \quad \Delta V_{v}=g t_{f l t}=\frac{g d}{V}
$$

Total $\Delta \mathrm{V}$ becomes

$$
\Delta V_{t o t a l}=\Delta V_{v}+\Delta V_{h}=2 V+\frac{g d}{V}
$$

Propulsive Gliding (Airless Flat Planet)

Want to choose V to minimize

$$
\begin{gathered}
\frac{\partial}{\partial V}\left(2 V+\frac{g d}{V}\right)=0 \quad 2-\frac{g d}{V^{2}}=0 \\
V_{o p t}=\sqrt{\frac{g d}{2}} \\
\Delta V_{\text {total }}=2 \sqrt{\frac{g d}{2}}+g d \sqrt{\frac{2}{g d}}=2 \sqrt{2} \sqrt{g d}
\end{gathered}
$$

Delta-V for Hopping and Gliding

UNIVERSITYOF MARYLAND

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Hopping (Spherical Planet)

$$
a=r\left(\frac{1-e \cos \theta}{1-e^{2}}\right) \quad v=\sqrt{\mu\left(\frac{2}{r}-\frac{1-e^{2}}{r(1-e \cos \theta}\right)}
$$

$$
\frac{\partial v}{\partial e}=0 \Rightarrow \frac{-r(1-e \cos \theta)(-2 e)+\left(1-e^{2}\right) r(-\cos \theta)}{r^{2}(1-e \cos \theta)^{2}}=0
$$

Hopping (Spherical Planet)

$$
\begin{gathered}
2 e r-2 e^{2} r \cos \theta-r \cos \theta+r e^{2} \cos \theta=0 \\
\cos \theta e^{2}-2 e+\cos \theta=0 \\
e_{o p t}=\frac{2 \pm \sqrt{2^{2}-4 \cos ^{2} \theta}}{2 \cos \theta}=\frac{1 \pm \sin \theta}{\cos \theta}
\end{gathered}
$$

+ produces $e>1$ (hyperbolic orbit); - gives elliptical orbit

$$
e_{o p t}=\frac{1-\sin \theta}{\cos \theta} \quad a_{o p t}=r\left(\frac{1-e_{o p t} \cos \theta}{1-e_{o p t}^{2}}\right)
$$

Propulsive Gliding (Airless Round Planet)

Assume horizontal velocity is V

$$
\Delta V_{h}=2 V
$$

(includes acceleration and deceleration)

$$
t_{f l t}=d / V \quad \Delta V_{v}=\left(g-\frac{V^{2}}{r}\right) t_{f l t}=\frac{g d}{V}-\frac{d V}{r}
$$

Total $\Delta \mathrm{V}$ becomes

$$
\Delta V_{t o t a l}=\Delta V_{v}+\Delta V_{h}=2 V+\frac{g d}{V}-\frac{d V}{r}
$$

Propulsive Gliding (Airless Round Planet)

Want to choose V to minimize

$$
\begin{gathered}
\frac{\partial}{\partial V}\left(2 V+\frac{g d}{V}-\frac{d V}{r}\right)=0 \quad 2-\frac{g d}{V^{2}}-\frac{d}{r}=0 \\
V_{o p t}=\sqrt{\frac{g d}{2-\frac{d}{r}}} \\
\Delta V_{\text {total }}=2 \sqrt{\frac{g d}{2-\frac{d}{r}}}+g d \sqrt{\frac{2-\frac{d}{r}}{g d}}-\frac{d}{r} \sqrt{\frac{g d}{2-\frac{d}{r}}} \\
\Delta V_{\text {total }}=2 \sqrt{2-\frac{d}{r}} \sqrt{g d}
\end{gathered}
$$

Hopping on Flat and Round Bodies

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Nondimensional Forms

$$
\text { Define } \nu \equiv \frac{V}{\sqrt{d g}} \quad \rho \equiv \frac{d}{r} \quad \eta \equiv \frac{h_{\max }}{d}
$$

$$
\begin{aligned}
& \nu_{\text {flat glide }}=2 \sqrt{2} \\
& \nu_{\text {flat hop }}=2 \quad \eta=\frac{1}{4}
\end{aligned}
$$

$$
\nu_{\text {spherical glide }}=2 \sqrt{2-\rho} \quad(0 \leq \rho \leq 1)
$$

Multiple Hops

- Assume n hops between origin and destination
- At each intermediate "touchdown", v_{v} has to be reversed $\quad \Delta V_{t o t a l}=2 V+2(n-1) V_{v}$

$$
t_{p e a k}=\frac{V_{v}}{g} \quad t_{t o t a l}=2 n t_{p e a k}=2 n \frac{V_{v}}{g}
$$

$d=V_{h} t_{t o t a l}=\frac{2 n}{g} V_{h} V_{v} \quad V_{v}=\sqrt{2 g h_{\max }} \quad \nu_{v}=\sqrt{\frac{2 \eta}{n}}$
$\nu \equiv \frac{V}{\sqrt{d g}} \quad \eta \equiv \frac{h_{\max }}{d / n} \quad V_{h}=\frac{d g}{2 n V_{v}} \quad \nu_{h}=\frac{1}{2} \sqrt{\frac{1}{2 n \eta}}$

Multiple Hop Analysis

$$
\Delta \nu=2 \nu+2(n-1) \nu_{v}
$$

$$
\Delta \nu=2 \sqrt{\nu_{v}^{2}+\nu_{h}^{2}}+2(n-1) \nu_{v}
$$

$$
\Delta \nu=2 \sqrt{\frac{2 \eta}{n}+\frac{1}{8 n \eta}}+2(n-1) \sqrt{\frac{2 \eta}{n}}
$$

$$
\frac{\partial \Delta \nu}{\partial \eta}=\left[\frac{1}{\sqrt{\frac{2 \eta}{n}+\frac{1}{8 n \eta}}}\left(\frac{2}{n}-\frac{1}{8 n \eta^{2}}\right)\right]+(n-1) \sqrt{\frac{2}{n \eta}}=0
$$

Analytically messy, but note that for $n=1 \Rightarrow \eta_{\text {opt }}=\frac{1}{4}$ (In general, solve numerically)

Optimal Solutions for Multiple Hops

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Hopping Between Different Altitudes

 Relative to starting point, landing elevation $\equiv h_{2}$$$
\begin{array}{llc}
v_{1}=\left(v_{h}, v_{v 1}\right) & v_{2}=\left(v_{h}, v_{v 2}\right) & v_{v 1} \neq v_{v 2} \\
h=v_{v 1} t-\frac{1}{2} g t^{2} & t_{\text {peak }}=\frac{v_{v 1}}{g} & h_{\text {peak }}=\frac{1}{2} \frac{v_{v 1}^{2}}{g}
\end{array}
$$

$$
v_{v 1}=\sqrt{2 g h_{p e a k}}
$$

$$
\text { From peak, } v_{v}=-g t_{f a l l} ; h=h_{\text {peak }}-\frac{1}{2} g t_{\text {fall }}^{2}
$$

$$
\begin{array}{r}
h_{2}=h_{\text {peak }}-\frac{1}{2} \frac{v_{v 2}^{2}}{g} \quad t_{\text {fall }}=\sqrt{ } \\
v_{v 2}=\sqrt{2 g\left(h_{\text {peak }}-h_{2}\right)}
\end{array}
$$

Optimal Hop with Altitude Change

$$
d=v_{h}\left(t_{p e a k}+t_{f a l l}\right)=v_{h}\left(\frac{v_{v 1}}{g}+\sqrt{\frac{2}{g}\left(h_{p e a k}-h_{2}\right)}\right)
$$

$$
\begin{aligned}
& d=v_{h}\left(\sqrt{\frac{2 h_{\text {peak }}}{g}}+\sqrt{\frac{2}{g}\left(h_{\text {peak }}-h_{2}\right)}\right) \\
& d \sqrt{g}=v_{h}\left(\sqrt{2 h_{\text {peak }}}+\sqrt{2\left(h_{\text {peak }}-h_{2}\right)}\right)
\end{aligned}
$$

$$
v_{h}=\frac{d \sqrt{g}}{\sqrt{2 h_{\text {peak }}}+\sqrt{2\left(h_{\text {peak }}-h_{2}\right)}}
$$

$$
\Delta v=\left(\sqrt{v_{h}^{2}+v_{v 1}^{2}}+\sqrt{v_{h}^{2}+v_{v 2}^{2}}\right)
$$

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Nondimensional Form of Equations

Remember that $\nu \equiv \frac{v}{\sqrt{d g}} ; \eta \equiv \frac{h_{\text {peak }}}{d} ; \lambda \equiv \frac{h_{2}}{d}$

$$
\begin{gathered}
\Delta \nu=\left(\sqrt{\nu_{h}^{2}+\nu_{v 1}^{2}}+\sqrt{\nu_{h}^{2}+\nu_{v 2}^{2}}\right) \\
\nu_{v 1}=\sqrt{2 \eta} \quad \nu_{v 2}=\sqrt{2(\eta-\lambda)} \\
\nu_{h}=\frac{1}{\sqrt{2 \eta}+\sqrt{2(\eta-\lambda)}}
\end{gathered}
$$

$$
\Delta \nu=\sqrt{\left(\frac{1}{\sqrt{2 \eta}+\sqrt{2(\eta-\lambda)}}\right)^{2}+2 \eta}+\sqrt{\left(\frac{1}{\sqrt{2 \eta}+\sqrt{2(\eta-\lambda)}}\right)^{2}+2(\eta-\lambda)}
$$

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Optimization of Height-Changing Hop

- This is not going to be one where you can take the derivative and set equal to zero, so use the equation to find a numerical optimization
- Set $\lambda=0$ to check for plain hop solution

$$
\Delta \nu=2 \sqrt{\frac{1}{8 \eta}+2 \eta} \Rightarrow \eta_{o p t}=\frac{1}{4}
$$

Trajectory Design for Height Change

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo Concept of Lunar Flying Vehicle

from "Study of One-Man Lunar Flying Vehicle - Final Report Volume 1: Summary" North American Rockwell, NASA CR-101922, August 1969

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo 15 Revisited: LFV Sortie

Basic assumptions

- Vehicle inert mass=300 kg
- Crew mass $=150 \mathrm{~kg}$
- Science package $=100 \mathrm{~kg}$
- Total propellant $=130^{\prime \prime} \mathrm{kg}$

Apollo 15 Revisited: Leg 1

Base camp to bottom of rille

- Distance 3 km
- Altitude change -150 m
- $\Delta V=139 \mathrm{~m} / \mathrm{sec}$
- Propellant used $=22 \mathrm{~kg}$
- Collect 20 kg of samples at landing site

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo 15 Revisited: Leg 2

Propulsive glide along bottom of rille

- Distance 2 km
- No net altitude change
- $\Delta V=160 \mathrm{~m} / \mathrm{sec}$
- Propellant used $=25 \mathrm{~kg}$
- Collect 20 kg of samples at landing site; leare_ 25 kg science packăge

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo 15 Revisited: Leg 3

Hop to top of mountain

- Distance 15 km
- Altitude change 1600 m
- $\Delta V=310 \mathrm{~m} / \mathrm{sec}$
- Propellant used $=46 \mathrm{~kg}$
- Collect 30 kg of samples at landing site; leave 50 kg science package

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo 15 Revisited: Leg 4

Return to base

- Distance 12 km
- Altitude change -1450 m
- $\Delta V=278 \mathrm{~m} / \mathrm{sec}$
- Propellant used $=37 \mathrm{~kg}$
- Return with 25 kg of science equipment and 70 kg of samples

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo 15 Revisited: Discussion

- Current minimum estimates are for 400 kg of residual propellants in Altair at landing - would support three equivalent sorties
- Presence of water ice or ISRU propellant production at outpost would easily support moderate flier mission requirements
- Challenges in routine refueling of cryogenic propellants on the lunar surface, reliable flight and landing control system

Landing Impact Attenuation

- Cannot rely on achieving perfect zero velocity at touchdown
- Specifications for landing conditions
- Vertical velocity $\leq 3 \mathrm{~m} / \mathrm{sec}$
- Horizontal velocity $\leq 1 \mathrm{~m} / \mathrm{sec}$

$$
\text { Kinetic Energy }=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{h}^{2}+v_{v}^{2}\right)
$$

Max case 500 kg vehicle $\Longrightarrow E=2500 \mathrm{Nm}$

Mars Phoenix Lander

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Apollo Lunar Module

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Landing Deceleration

- Look at $3 \mathrm{~m} / \mathrm{sec}$ vertical velocity
- Constant force deceleration

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=F d \quad \frac{1}{2} v^{2}=\frac{F}{m} d=a_{\text {desired }} d \quad d=\frac{1}{2} \frac{v^{2}}{a_{\text {desired }}} \\
& t_{\text {decel }}=\frac{v}{a_{\text {desired }}} \\
& \text { - Spring deceleration } \\
& F=k x \quad \int F d x=\frac{1}{2} m v^{2} \\
& k=\frac{m v^{2}}{d^{2}} \quad a_{\text {peak }}=\frac{k d}{m}
\end{aligned}
$$

universtiv of MARYLAND

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

