Terramechanics

- Origin and nature of lunar soil
- Soil mechanics
- Rigid wheel mechanics

Effect of Lateral Velocity at Touchdown

- Resolve torques around landing gear footpad

$$
\begin{aligned}
\ddot{\theta} & =\frac{\tau_{t o t}}{I_{t o t}} \\
\ddot{\theta} & =\frac{F_{h} h-F_{v} w-m g w}{I_{c g}+m \ell^{2}}
\end{aligned}
$$

- Worst cases - hit obstacle (high force), landing downhill
- Issue: rotational velocity induced is counteracted by vehicle weight
- Will vehicle rotation stop before overturn limit?

Simple Approach to Landing Stability

Kinetic energy at landing

$$
K . E .=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{v}^{2}+v_{h}^{2}\right)
$$

Worst case: assume $v_{v}^{2}=0$
Dissipated by potential energy of raising C.G. by rotation around impact point

$$
\begin{gathered}
\text { P.E. }=m g \Delta h=m g(\ell-h) \\
v_{c r i t}=\sqrt{2 g(\ell-h)} \quad \text { or } \quad w_{r e q}=\sqrt{\left(\frac{v_{h}^{2}}{2 g}+h\right)^{2}-h^{2}}
\end{gathered}
$$

Robotic Mobility - Above the Surface ENAE 788X - Planetary Surface Robotics

Worst Case: Downhill Landing

Kinetic energy at landing

$$
K . E .=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(v_{v}^{2}+v_{h}^{2}\right)
$$

Both v_{h} and v_{v} can drive overturn

$$
P . E .=m g \Delta h=m g[\ell-(w \sin \gamma+h \cos \gamma)]
$$

$$
v_{c r i t}=\sqrt{\frac{g}{2}[\ell-(w \sin \gamma+h \cos \gamma)]}
$$

Lunar Regolith

- Broken down from larger pieces over time
- Major constituents
- Rock fragments
- Mineral fragments
- Glassy particles
- Local environment
-10^{-12} torr ($\left.=1.22 \times 10^{-10} \mathrm{~Pa}=1.93 \times 10^{-14} \mathrm{psi}\right)$
- Meteorites at velocities $>10^{5} \mathrm{~m} / \mathrm{sec}$
- Galactic cosmic rays, solar particles
- Temperature range $+250^{\circ} \mathrm{F}--250^{\circ} \mathrm{F}$

Regolith Creation Process

- Only "weathering" phenomenon on the moon is meteoritic impact!
- Weathering processes
- Comminution: breaking rocks and minerals into smaller particles
- Agglutination: welding fragments together with molten glass formed by impact energy
- Solar wind spallation and implantation (miniscule)
- Fire fountaining (dormant)

JSC-1 Simulant

- Ash vented from Merriam Crater in San Francisco volcano field near Flagstaff, AZ
- K-Ar dated at 150,000 years old $\pm 30,000$
- Major constituents $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{FeO}$, $\mathrm{MgO}, \mathrm{CaO}, \mathrm{Na}_{2} \mathrm{O}$, other $<1 \%$
- Represents low-Ti regolith from lunar mare
- MLS-1 simulant (U.Minn.) preferred for simulation of highland material
- BP-1 (Flagstaff, AZ) is ground basaltic lava higher fidelity because of angular grain shapes

Wheel-Soil Interaction

Wheel rolling over soil does work
 - Compression
 - "Bulldozing"

from Gibbesch and Schafer, "Advanced and Simulation Methods of Planetary Rover Mobility on Soft Terrain" 8th ESA Workshop
on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, November, 2004

Soil Testing Apparatus

Bevameter (force vs. displacement)

Internal friction angle φ

Shear deformation modulus \mathbf{K}

Terramechanics

Soil Characterization - Direct Shear

Modeling Soil Reaction to a Wheel

Assume soil reaction is like a (nonlinear) spring

$$
P=k z^{n}
$$

$$
P=\text { applied pressure }
$$

$$
z=\text { compression depth }
$$

$k, n=$ heuristic parameters

Effects of Soil Mechanics

Wheel-Soil Interactions

Displacement Energy $\frac{E}{A}=\int \frac{F}{A} d z=\int P d z$

$$
\frac{E}{A}=\int_{0}^{z_{o}} P d z=\int_{0}^{z_{o}} k z^{n} d z=k \frac{z_{o}^{n+1}}{n+1}
$$

Rolling Resistance

$$
\text { Total Energy } \frac{E}{A} A=\frac{E}{A} b d=k \frac{z_{o}^{n+1}}{n+1} b d
$$

Given a force resisting rolling $\equiv R$,
the energy required to roll a distance d is

$$
\begin{gathered}
E_{\text {roll }}=R d \\
E_{\text {roll }}=E_{\text {displacement }} \Rightarrow R d=\frac{E}{A} b d
\end{gathered}
$$

Rolling Resistance

$$
\text { For } n=1: P=k z ; \frac{E}{A}=k \frac{z_{o}^{2}}{2} ; R=\frac{1}{2} k b z_{o}^{2}
$$

$$
\text { For } n=\frac{1}{2}: P^{2}=k^{2} z ; \frac{E}{A}=\frac{2}{3} k z_{o}^{\frac{3}{2}} ; R=\frac{2}{3} k b z_{o}^{\frac{3}{2}}
$$

$$
\text { For } n=0: P=k ; \frac{E}{A}=k z_{o} ; R=k b z_{o}
$$

Generic case: $P=k z^{n} ; \frac{E}{A}=k \frac{z_{o}^{n+1}}{n+1} ; R=k b \frac{z_{o}^{n+1}}{n+1}$

Soil Displacement Calculations

$$
\begin{aligned}
& R-\int_{0}^{\theta_{o}} d F \sin \theta=0 \\
& -W+\int_{0}^{\theta_{o}} d F \cos \theta=0
\end{aligned}
$$

$$
d F \cos \theta=-P b d x
$$

$$
d F=P b r d \epsilon \quad d F \cos \theta=-P b d x
$$

$$
R=\int_{0}^{\theta_{o}} P b d z \quad W=-\int_{0}^{\theta_{o}} P b d x
$$

In general, $P=k x^{n}$

$$
W=-\int_{0}^{z_{o}} b k z^{n} d x
$$

Soil Displacement Calculations

$$
\begin{aligned}
& \text { wheel width } b \\
& x^{2}=\left(\frac{D}{2}\right)^{2}-\overline{A B}=\frac{D}{2}-\left(z_{o}-z\right) \\
& =\left(\frac{D}{2}\right)^{2}-\left(\frac{D}{2}\right)^{2}-\left[\frac{D}{2}-\left(z_{o}-z\right)\right]^{2}+2 \frac{D}{2}\left(z_{o}-z\right)-\left(z_{o}-z\right)^{2} \\
& x^{2}=\left[D-\left(z_{o}-z\right)\right]\left(z_{o}-z\right)
\end{aligned}
$$

Soil Compression Calculations

But $D \gg z_{o}-z$

$$
x^{2} \approx D\left(z_{o}-z\right) \Rightarrow 2 x d x=-D d z
$$

so from $W=-\int_{0}^{z_{o}} b k z^{n} d x$ we get $W=-\int_{0}^{z_{o}} b k z^{n} \frac{-D}{2 x} d z$

$$
\begin{gathered}
W=-b k \int_{0}^{z_{o}} z^{n}\left(\frac{-D}{2 \sqrt{D} \sqrt{z_{o}-z}}\right) d z \\
W=b k \int_{0}^{z_{o}} z^{n}\left(\frac{\sqrt{D} d z}{2 \sqrt{z_{o}-z}}\right) d z
\end{gathered}
$$

Soil Displacement Calculations

$$
\begin{aligned}
& \text { Define } z_{o}-z \equiv t^{2} \Rightarrow d z=-2 t d t \\
& \qquad W=b k \sqrt{D} \int_{0}^{\sqrt{z_{o}}}\left(z_{o}-t^{2}\right)^{n} d t
\end{aligned}
$$

Taylor Series expansion $\left(z_{o}-t^{2}\right)^{n} \cong z_{o}^{n}-n z_{o}^{n-1} t^{2}+\cdots$

$$
\begin{gathered}
W \approx \frac{b k \sqrt{D z_{o}}}{3} z_{o}^{n}(3-n) \\
\text { for } n=1 \Rightarrow W=\frac{2}{3} b k z_{o} \sqrt{D z_{o}} \\
\text { for } n=\frac{1}{2} \Rightarrow W=\frac{5}{6} b k z_{o} \sqrt{D} \\
\text { for } n=0 \Rightarrow W=b k \sqrt{D z_{o}}
\end{gathered}
$$

Rolling Resistance as $f(\mathbf{W})$

$$
\begin{gathered}
\text { for } n=0 \Rightarrow W=b k \sqrt{D z_{o}} \Rightarrow z_{o}=\left(\frac{W}{b k}\right)^{2} \frac{1}{D} \\
\qquad R=k b z_{o} \Rightarrow R=\frac{k b}{(k b)^{2}} \frac{W^{2}}{D} \Rightarrow R=\frac{W^{2}}{k b D} \\
\text { for } n=\frac{1}{2} \Rightarrow W=\frac{5}{6} b k z_{o} \sqrt{D} \Rightarrow z_{o}=\frac{6}{5} \frac{W}{b k \sqrt{D}} \\
R=\frac{2}{3} k b z_{o}^{\frac{3}{2}} \Rightarrow R=\frac{2}{3} k b\left(\frac{6}{5} \frac{W}{k b \sqrt{D}}\right)^{\frac{3}{2}}=\frac{2}{3}\left(\frac{6}{5}\right)^{\frac{3}{2}} \frac{W^{\frac{3}{2}}}{\sqrt{k b} D^{\frac{3}{4}}} \\
R=0.876 \frac{W^{\frac{3}{2}}}{\sqrt{k b} D^{\frac{3}{4}}}
\end{gathered}
$$

Rolling Resistance as $f(\mathbf{W})$

$$
\begin{gathered}
\text { for } n=1 \Rightarrow W=\frac{2}{3} b k z_{o}^{\frac{3}{2}} \sqrt{D} \Rightarrow z_{o}^{2}=\left(\frac{3 W}{2 k b \sqrt{D}}\right)^{\frac{4}{3}} \\
R=\frac{1}{2} k b z_{o}^{2} \Rightarrow R=\frac{1}{2} k b\left(\frac{3 W}{2 k b \sqrt{D}}\right)^{\frac{4}{3}}=\frac{1}{2}\left(\frac{3}{2}\right)^{\frac{4}{3}}\left(\frac{W^{4}}{k b D^{2}}\right)^{\frac{1}{3}} \\
R=0.859\left(\frac{W^{4}}{k b D^{2}}\right)^{\frac{1}{3}}
\end{gathered}
$$

Rolling Resistance as $f(W)$ (Generic)

$$
\begin{gathered}
W=\frac{b k \sqrt{D z_{o}}}{3} z_{o}^{n}(3-n)=\frac{b k \sqrt{D}}{3} z_{o}^{n+\frac{1}{2}}(3-n) \\
z_{o}^{n+\frac{1}{2}}=\frac{3}{(3-n)} \frac{W}{b k \sqrt{D}} \\
z_{o}^{n+1}=\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{n+1}{n+\frac{1}{2}}}=\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}} \\
R=\frac{b k}{n+1} z_{o}^{n+1}=\frac{b k}{n+1}\left(\frac{3}{3-n} \frac{W}{b k \sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}} \\
R=\frac{1}{n+1}\left(\frac{3}{3-n} \frac{W}{\sqrt{D}}\right)^{\frac{2(n+1)}{2 n+1}}\left(\frac{1}{b k}\right)^{\frac{1}{2 n+1}}
\end{gathered}
$$

More Detailed Soil Compression Equation

$$
k=\frac{k_{c}}{b}+k_{\phi}
$$

$k_{c}=$ modulus of cohesion of soil deformation

$$
k_{c} \text { units } \Rightarrow<N / m^{(n+1)}>
$$

$k_{\phi}=$ modulus of friction of soil deformation

$$
\begin{gathered}
k_{\phi} \text { units } \Rightarrow<N / m^{(n+2)}> \\
b=\text { wheel width }
\end{gathered}
$$

$$
P=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

Soil Characteristics

soil type	n	$k_{c}\left\langle\frac{N}{m^{n+1}}\right\rangle$	$k_{\phi}\left\langle\frac{N}{m^{n+2}}\right\rangle$
Dry Sand	1.1	990	$1,528,000$
Lunar Regolith	1	1400	820,000
Sandy Loam	0.7	5270	$1,515,000$
Sandy Loam (MER-B)	1	28,000	$7,600,000$
Slope Soil (MER-B)	0.8	6800	210,000
Clay (Earth)	0.5	13,190	692,200

Terramechanics

Equations for Compression Resistance

$$
\begin{gathered}
z=\left(\frac{3 W_{w}}{(3-n) b k \sqrt{d}}\right)^{\frac{2}{2 n+1}} \\
W_{w}=\text { weight on wheel } \\
d=\text { wheel diameter }
\end{gathered}
$$

$$
R_{c}=\left(\frac{b k}{n+1}\right) z^{n+1}
$$

$R_{c}=$ compression resistance (per wheel)

Soil Compression - Reece Formulation

Problem is that k_{c} and k_{ϕ} have variable dimensions, based on n
k_{c} units $\Rightarrow<N / m^{(n+1)}>$
k_{ϕ} units $\Rightarrow<N / m^{(n+2)}>$

Compression Resistance (Lunar Soil)

$$
\begin{gathered}
R_{c}=\frac{1}{n+1}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{2 n+1}}\left(\frac{3 W_{w}}{(3-n) \sqrt{d}}\right)^{\frac{2(n+1)}{2 n+1}} \\
n=1 \\
k_{c}=0.14 \mathrm{~N} / \mathrm{cm}^{2} \\
k_{\phi}=0.827 \mathrm{~N} / \mathrm{cm}^{3} \\
R_{c}=\frac{1}{2}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{3}}\left(\frac{3 W_{w}}{2 \sqrt{d}}\right)^{\frac{4}{3}}
\end{gathered}
$$

Apollo Lunar Roving Vehicle Example

$$
\begin{gathered}
z=\left(\frac{3 * 253}{2(0.14+17.4 * 0.827) \sqrt{82}}\right)^{\frac{2}{3}}=2.03 \mathrm{~cm} \\
R_{c}=\frac{1}{2}(0.14+17.4 * 0.827)^{\frac{-1}{3}}\left(\frac{3 * 253}{2 \sqrt{82}}\right)^{\frac{4}{3}}=29.8 \mathrm{~N}
\end{gathered}
$$

check units -

$$
\left(\frac{N^{-1 / 3}}{c m^{-2 / 3}}\right)\left(\frac{N^{4 / 3}}{c m^{2 / 3}}\right)=N
$$

Rolling and Gravitation Resistance

- Rolling resistance (tires, bearings, etc.)

$$
\begin{gathered}
R_{r}=W_{v} c_{f} \\
W_{v}=\text { weight of vehicle } \\
c_{f}=\text { coefficient of friction (typ. } 0.05 \text {) }
\end{gathered}
$$

- Gravitational resistance

$$
R_{g}=W_{v} \sin \theta_{\text {slope }}
$$

- LRV examples (15° slope)

$$
R_{r}=51 N \quad R_{g}=262 N
$$

Bulldozing Resistance

- "Bulldozing" is the process of pushing soil up ahead of the wheel
- Ranges from a small factor to a huge one, depending on soil and wheel factors
- Will be covered in detail in a later lecture

Example: Wheelbarrow (Single) Wheel

$$
R=\left(k_{c}+k_{\phi} b\right)^{\frac{-1}{2 n+1}} W^{\frac{2(n+1)}{2 n+1}} \frac{1}{n+1}\left(\frac{3}{3-n}\right)^{\frac{2(n+1)}{2 n+1}} D^{\frac{-(n+1)}{2 n+1}}
$$

Effects of Wheel Parameters

Terramechanics
ENAE 788X - Planetary Surface Robotics

Effect of Soil "Spring Constant" on R/W

Terramechanics
33

Soil Type and Wheel Load

Soil Type and Specific Resistance

Effect of Wheel Diameter and Width

Terramechanics

Effect of Slope

Terramechanics
ENAE 788X - Planetary Surface Robotics

