Terramechanics II

- Soil bearing parameters
- Bulldozing
- Tandem wheels
- Soil force transfer
- Slippage

Terzaghi Analysis of Soil Deformation

General shear fariure: $\left.C_{D}=2 B\left(c N_{c}+\gamma D_{f} N_{Q}+\gamma B N_{\tau}\right)\right\}$ per unit length Local shear failure: $\left.\quad Q_{D}^{\prime}=2 B\left(\frac{2}{g} c N_{c}^{\prime}+\gamma D_{f} N_{q}^{\prime}+\gamma B N_{7}^{\prime}\right)\right\}$ of footing

Circular footing, Diameter 2R,
Total critical load. $\quad Q_{D r} \equiv R^{2} \pi\left(/ 3 c N_{c}+\gamma D_{f} N_{q}+0.6 \gamma R V_{g}\right)$

Rough base
Unit weight of earth $=\boldsymbol{\gamma}$ Unit shear. resistance $s=c+\sigma \tan \phi$
universtry of
MARYLAND

Terramechanics II ENAE 788X - Planetary Surface Robotics

Terzaghi Soil Bearing Capacity Factors

$$
\begin{gathered}
N_{q}=\frac{\exp \left[\left(\frac{3 \pi}{2}-\phi\right) \tan \phi\right]}{2 \cos ^{2}\left(\frac{\pi}{4}+\frac{\phi}{2}\right)} \\
N_{c}=\cot \phi\left\{\frac{\exp \left[\left(\frac{3 \pi}{2}-\phi\right) \tan \phi\right]}{2 \cos ^{2}\left(\frac{\pi}{4}+\frac{\phi}{2}\right)}-1\right\}=\cot \phi\left(N_{q}-1\right) \\
K_{p \gamma}=\left(8 \phi^{2}-4 \phi+3.8\right) \tan ^{2}\left(\frac{\pi}{3}+\frac{\phi}{2}\right) \\
N_{\gamma}=\frac{1}{2}\left(\frac{K_{p \gamma}}{\cos ^{2} \phi}-1\right) \tan \phi
\end{gathered}
$$

$$
\phi=\text { Angle of internal resistance of soil }
$$

$K_{c} \equiv$ Modulus of density of soil deformation

$$
K_{c}=\left(N_{c}-\tan \phi\right) \cos ^{2} \phi
$$

$K_{\gamma} \equiv$ Modulus of cohesion of soil deformation

$$
K_{\gamma}=\left[\frac{2 N_{\gamma}}{\tan \phi}+1\right] \cos ^{2} \phi
$$

$\alpha \equiv$ Angle of approach of wheel to soil

$$
\alpha=\cos ^{-1}\left(1-\frac{2 z}{D}\right)
$$

$\gamma \equiv$ Weight density of soil $\left(\frac{N}{m^{3}}\right)$

Soil Bearing Limit

Safe weight on the soil

$$
\begin{aligned}
W_{s}=A\left(c N_{c}+\gamma z N_{q}+\frac{1}{2} \gamma b N_{\gamma}\right) \\
c \equiv \text { Soil cohesion }(P a) \\
b \equiv \text { Wheel width }(m)
\end{aligned}
$$

Bulldozing Resistance

General case:

$$
\begin{aligned}
R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}\right. & \left.+\gamma z^{2} K_{\gamma}\right) \\
& +\frac{\ell_{o}^{3} \gamma}{3}\left(\frac{\pi}{2}-\phi\right)+c \ell_{o}^{2}\left[1+\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\right]
\end{aligned}
$$

$$
\ell_{o}=z \tan ^{2}\left(\frac{\pi}{4}-\frac{\phi}{2}\right)
$$

For tracked vehicles, only the first term applies:

$$
R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}+\gamma z^{2} K_{\gamma}\right)
$$

Tandem Wheels

Soil Weight Bearing Analysis

In general,

$$
\begin{gathered}
W=\int_{0}^{\theta_{0}} d F \cos \theta=\int_{0}^{\theta_{0}} P b d s \cos \theta \\
W=\int_{0}^{\theta_{0}} b k \sqrt{z} \cos \theta d s \\
d s=r d \iota \quad z=r\left(\cos \theta-\cos \theta_{0}\right) \\
W=\int_{0}^{\theta_{0}} b k r \sqrt{r\left(\cos \theta-\cos \theta_{0}\right)} \cos \theta d \iota
\end{gathered}
$$

Generic Wheel Soil Suspension

Assuming small sinkage,

$$
\begin{gathered}
z \rightarrow \text { small, } \theta \rightarrow \text { small } \\
\cos \theta \approx 1 \quad \cos \theta d \theta \approx d \theta \\
\cos \theta \approx 1-\frac{\theta^{2}}{2}+(\text { higher order terms }) \\
W=\frac{b k r^{3 / 2}}{\sqrt{2}} \int_{0}^{\theta_{0}} \sqrt{\theta_{0}^{2}-\theta^{2}} d \theta \\
W=\frac{b k r^{3 / 2}}{\sqrt{2}} \frac{1}{2}\left[\theta_{0}^{2} \sin ^{-1}\left(\frac{\theta}{\theta_{0}}\right)+\theta \sqrt{\theta_{0}^{2}-\theta^{2}}\right]_{0}^{\theta_{0}}
\end{gathered}
$$

Weight on the Front Wheel

$$
W=\frac{\pi b k r^{3 / 2}}{4 \sqrt{2}} \theta_{0}^{2}
$$

Front wheel: $z_{1}=r_{1}-r_{1} \cos \theta_{0}$

$$
z_{1}=r_{1}-r_{1}\left(1-\frac{\theta_{0}^{2}}{2}+\cdots\right) \Longrightarrow \theta_{0}^{2} \cong 2 \frac{z_{1}}{r_{1}}
$$

$$
W_{1} \cong \frac{\pi b k z_{1} \sqrt{r_{1}}}{2 \sqrt{2}}
$$

Weight on Back Wheel

Change to limits of integration:

$$
\begin{gathered}
0 \longrightarrow \theta_{0}, \quad r \longrightarrow r_{2} \\
W_{2}=\frac{b k r_{2}^{3 / 2}}{\sqrt{2}} \int_{0}^{\theta_{0}} \sqrt{\theta_{02}^{2}-\theta^{2}} d \theta
\end{gathered}
$$

$$
\sqrt{\theta_{02}^{2}-\theta^{2}} \cong \theta_{02}\left(1-\frac{1}{2} \frac{\theta^{2}}{\theta_{02}^{2}}+\cdots\right)
$$

$$
\int_{0}^{\theta_{0}} \sqrt{\theta_{02}^{2}-\theta^{2}} d \theta \cong \theta_{02} \theta_{1}-\frac{1}{6} \frac{\theta_{1}^{3}}{\theta_{02}}=\theta_{02} \theta_{1}\left(1-\frac{1}{6} \frac{\theta_{1}^{2}}{\theta_{02}^{2}}\right) \cong \theta_{02} \theta_{1}
$$

Weight on Back Wheel

$$
\begin{gathered}
W_{2}=\frac{b k r^{3 / 2}}{\sqrt{2}} \theta_{02} \theta_{1} \\
z_{0} \cong r_{2} \frac{\theta_{02}^{2}}{2} \\
\theta_{02} \cong \sqrt{2 \frac{z_{0}}{r_{2}}} z_{2} \cong r_{2} \frac{\theta_{1}^{2}}{2} \\
\theta_{1} \cong \sqrt{2 \frac{z_{2}}{r_{2}}} \\
W_{2}=b k \sqrt{2 r_{2}} \sqrt{z_{0} z_{2}}
\end{gathered}
$$

Track Depth of Tandem Wheels

$$
\begin{gathered}
\text { Front: } z_{1}=\frac{2 \sqrt{2} W_{1}}{\pi b k \sqrt{r_{1}}} \\
\text { Back: } z_{2}=\left[\frac{W_{2}}{b k \sqrt{2 r_{2}}} \frac{1}{\sqrt{z_{0}}}\right]^{2} \\
z_{0}=z_{1}+z_{2}=\frac{2 \sqrt{2} W_{1}}{\pi b k \sqrt{r_{1}}}+\frac{W_{2}^{2}}{(b k)^{2} 2 r_{2}} \frac{1}{z_{0}}
\end{gathered}
$$

Much algebra then ensues...

$$
z_{0}^{2}-\frac{2 \sqrt{2} W_{1}}{\pi b k \sqrt{r_{1}}} z_{0}+\frac{W_{2}^{2}}{(b k)^{2} 2 r_{2}}=0
$$

Rolling Resistance of Tandem Wheels

Solve the quadratic equation to get

$$
z_{0}=\frac{1}{b k}\left(\frac{\sqrt{2} W_{1}}{\pi \sqrt{r_{1}}}+\sqrt{\frac{2 W_{1}^{2}}{\pi^{2} r_{1}}+\frac{W_{2}^{2}}{2 r_{2}}}\right)
$$

This was all done for $n=\frac{1}{2} \Longrightarrow R=\frac{2}{3} b k z_{0}^{3 / 2}$

$$
\begin{aligned}
& R=\frac{2}{3} \frac{1}{\sqrt{b k}}\left(\frac{\sqrt{2} W_{1}}{\pi \sqrt{r_{1}}}+\sqrt{\frac{2 W_{1}^{2}}{\pi^{2} r_{1}}+\frac{W_{2}^{2}}{2 r_{2}}}\right)^{3 / 2} \\
& R=\frac{2}{3} \frac{1}{\sqrt{b k}}\left(\frac{2 W_{1}}{\pi \sqrt{D_{1}}}+\sqrt{\frac{4 W_{1}^{2}}{\pi^{2} D_{1}}+\frac{W_{2}^{2}}{D_{2}}}\right)^{3 / 2}
\end{aligned}
$$

Nondimensional Forms

Total wheel load $W=W_{1}+W_{2}$
Wheel weight ratio $a \equiv \frac{W_{1}}{W_{2}}$

$$
\begin{gathered}
\text { For } W_{1}=W_{2}=\frac{W}{2} \Longrightarrow a=1 \\
W_{1}=\frac{a}{1+a} W \quad W_{2}=\frac{1}{1+a} W \\
R=\frac{2}{3} \frac{1}{(a+1)^{3 / 2}} \frac{W^{3 / 2}}{\sqrt{b k}}\left(\frac{2 a}{\pi \sqrt{D_{1}}}+\sqrt{\frac{4 a^{2}}{\pi^{2} D_{1}}+\frac{1}{D_{2}}}\right)^{3 / 2}
\end{gathered}
$$

Define wheel diameter ratio $\rho \equiv \frac{D_{1}}{D_{2}}$

Nondimensional Forms

$$
\begin{gathered}
R=\frac{2}{3} \frac{1}{(a+1)^{3 / 2}} \frac{W^{3 / 2}}{D_{2}^{3 / 4} \sqrt{b k}}\left(\frac{2 a}{\pi \sqrt{\rho}}+\sqrt{1+\frac{4 a^{2}}{\pi^{2} \rho}}\right)^{3 / 2} \\
\text { Let } \xi \equiv \frac{2}{3} \frac{1}{(a+1)^{3 / 2}}\left(\frac{2 a}{\pi \sqrt{\rho}}+\sqrt{1+\frac{4 a^{2}}{\pi^{2} \rho}}\right)^{3 / 2} \\
R=\frac{\xi}{\sqrt{b k}} \frac{W^{3 / 2}}{D_{2}^{3 / 4}}
\end{gathered}
$$

Simple Example Case

$$
\text { Consider } \rho=1 \quad\left(D_{1}=D_{2}=D\right)
$$

$$
a=1 \quad\left(W_{1}=W_{2}=\frac{W}{2}\right)
$$

For tandem wheels, $R=\frac{0.580}{\sqrt{b k}} \frac{W^{3 / 2}}{D_{2}^{3 / 4}}$
For single wheel $(\mathrm{n}=1 / 2), R=\frac{0.876}{\sqrt{b k}} \frac{W^{3 / 2}}{D_{2}^{3 / 4}}$
Tandem wheels reduce rolling resistance by 34%

Dual Wheels

Equivalent to single wheel case twice as wide $b \Longrightarrow 2 b$

$$
\begin{aligned}
& R=\frac{0.876}{\sqrt{2}} \frac{1}{\sqrt{b k}} \frac{W^{3 / 2}}{D_{2}^{3 / 4}} \\
& R_{\text {dual }}=\frac{0.619}{\sqrt{b k}} \frac{W^{3 / 2}}{D_{2}^{3 / 4}}
\end{aligned}
$$

Dual wheel rolling resistance 29% less than single,
7% higher than tandem

Grousers (on Tracked Vehicle)

Grousers (MSL Wheels)

Mars Rover Wheels

Tractive Force per Wheel (No Grousers)

$$
\begin{aligned}
& H=\left[A C_{b}+W_{w} \tan \phi_{b}\right]\left[1-\frac{K}{\ell}\left(1-e^{\frac{-s \ell}{K}}\right)\right] \\
& \\
& A=\text { area of contact } \\
& C_{b}=\text { coefficient of soil/wheel cohesion } \\
& \\
& \phi_{b}=\text { wheel } / \text { soil friction angle } \\
& \\
& s=\text { wheel slip ratio } \\
& K=\text { coefficient of soil slip } \\
& \ell=\text { length of contact patch }
\end{aligned}
$$

Tractive Force per Wheel (With Grousers)

$H=\left[b \ell C_{b}\left(1+\frac{2 h}{b}\right) N_{g}+W \tan \phi_{b}\left(1+0.64 \frac{h}{b} \arctan \frac{b}{h}\right)\right]\left[1-\frac{K}{\ell}\left(1-e^{-\frac{\Delta \ell}{K}}\right)\right]$
$A=$ area of contact $\cong b \ell$
$C_{b}=$ soil/wheel cohesion $=0.017 \mathrm{~N} / \mathrm{cm}^{2}$ $\phi_{b}=$ wheel/soil friction angle $=35^{\circ}$ $s=$ wheel slip ratio (typ. 0.02-0.05) $K=$ coefficient of soil slip $=1.8 \mathrm{~cm}$ $\ell=$ length of contact patch $=\frac{D}{2} \cos ^{-1}\left(1-\frac{2 z}{D}\right)$ $h=$ height of grouser

> All values typical for lunar soil

Effect of Soil Thrust Fraction

Soil Thrust Fraction $\left[1-\frac{K}{\ell}\left(1-e^{-\frac{s \ell}{K}}\right)\right]$

Terramechanics II ENAE 788X - Planetary Surface Robotics

Basic Equation of Vehicle Propulsion

$$
D P=H-\left(R_{c}+R_{b}+R_{g}+R_{r}\right)
$$

- DP: Drawbar pull (residual drive force)
- H: Maximum tractive force of wheels
- R_{c} : Compaction resistance
- R_{b} : Bulldozing resistance
- Rg_{g} : Gravitational resistance
- R_{r} : Rolling resistance (internal)

Wheel Test Apparatus

- Wheel testing done at MIT Field and Space Robotics Laboratory
- Independent control of motion and wheel velocity provides controllable slip

$$
s=1-\frac{V}{\omega r}
$$

Terramechanics II ENAE 788X - Planetary Surface Robotics

Wheel Torque vs. Time

$$
\varphi=0.24
$$

Sinkage vs. Slip Ratio

Sinkage vs. Slip Ratio

Drawbar Pull vs. Slip Ratio

Sensor Force Fy vs. Slip Ratio

Terramechanics II ENAE 788X - Planetary Surface Robotics

Motor Torque vs. Slip Ratio

Motor Torque vs. Slip Ratio

