Multi-Wheel Systems

- Obstacle climbing with multiwheel systems
- Planar rocker analysis
- Planar rocker-bogey analysis
- Suspension dynamics

© 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics

Multi-Wheel Drive Systems X, = Front un, Zi > MN, Sum Moments around rear wheel $N, l = W(l-a) - ur(t, +\tau_2)$ $N_1 = W \frac{l-q}{I} - \frac{ur}{T} (\tau_2 + \tau_2)$ $N_1 + N_2 = W \implies H \gg N_2 = W - N_1$ $N_2 = W_{\overline{d}}^{\alpha} + \frac{ur}{R}(\tau_1 + \tau_2)$ $N_1 = W \frac{1-\alpha}{T} \quad N_2 = W \frac{\alpha}{T} \quad (static case)$ if (1,+1,) u << W,

Four-Wheeled Vehicle Climbing a Wall

from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990 UNIVERSITY OF Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics

Wall Climbing EFvertical => N2 + MN, = W EFhorizontil => UN2 = N, EMrear axle => MN2r + MN, (l+r) = W(l-a) $N_2 + u^2 N_2 = W \Rightarrow N_2 = \frac{W}{1 + u^2} \Rightarrow N_1 = \frac{u}{1 + u^2} W$ $\frac{\mathcal{U}}{\mathcal{U}_{1+\mathcal{M}^{2}}}Wr + \frac{\mathcal{U}^{2}}{\mathcal{U}_{1+\mathcal{M}^{2}}}W(l+r) = W(l-q)$ $(r_{49}) M^2 + r M - (l_{-9}) = 0$

$$\mathcal{M} = \frac{-r \pm \sqrt{r^2 + 4(r+a)(l-a)}}{2(r+a)}$$
Let $d \equiv \frac{a}{r}$

$$\mathcal{M} = \frac{-1 \pm \sqrt{1 + 4(1+a)(\lambda-a)}}{2(1+a)}$$

Required Traction for Wall Climbing

from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990 UNIVERSITY OF Multi-Wheel System

Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics

Bump/Slope Traction Requirements

from Howard Eisen, "Scale and Computer Modeling of Wheeled Vehicles for Planetary Exploration" S.M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, May, 1990 UNIVERSITY OF Multi-Wheel Systems ENAE 788X - Planetary Surface Robotics

Planar Rocker Analysis

 \leq Forces: $N_1 + N_2 = W$ E Moment (rea axle) $\mathcal{T}_{1} + \mathcal{T}_{2} + N_{1} l \cos \theta = \mathcal{T}_{0} + \mathcal{W}[(l-a)\cos \theta + h\sin \theta]$

 $N_{i} l \cdots d = T_{0} - Z_{i} - T_{2} + W \left[(l - q) e_{0} \partial - h \sin \theta \right]$ $N_{i} = \frac{T_{0} - 2_{i} - \overline{T_{2}}}{R_{cos} \Theta} + W \left(\frac{l - 9}{R} - \frac{h}{R} + cos \Theta \right)$ $N_2 = W \cdot N_1 = W \left(1 - \frac{l \cdot a}{R} + \frac{L}{T} t \cdot a \cdot \theta \right) - \frac{T_0 - 2_1 - 2_1}{I \cdot a \cdot \theta}$ $N_2 = W\left(\frac{9}{2} + \frac{h}{\ell} \tan \theta\right) + \frac{\tau_1 + \tau_2 - \tau_0}{\ell_0, \theta}$

Planar Rocker - Bogey Analysis $N_{1} = \overline{P} N_{B} \left(\frac{l_{B} \cdot q_{B}}{l_{R}} - \frac{h_{B}}{l_{0}} + \frac{h_{B}}{l_{0}} + \frac{\theta_{B}}{l_{0}} \right) - \frac{\mathcal{T}_{1} + \mathcal{T}_{2}}{l_{B} \omega_{1} \theta_{R}}$ N2 = NB (To + TB to OB) + T, +T2 10 coile $(T_{B}=0 a lue y s)$ For rocker $N_{B} = \frac{T_{o} - T_{3}}{l_{o}\cos(\theta_{R} + \theta_{R})} + W\left(\frac{J_{R} - 9_{R}}{J_{R}} - \frac{h_{R}}{J_{R}} + \frac{h_{R}}{I_{R}} + \frac{h_{R}}{h_{R}} + \frac{h$ N3 = W ($\frac{q_R}{I_0} + \frac{h_R}{I_R} \stackrel{ton}{\longrightarrow} (\Theta_R + \Theta_R) + \frac{T_3 - T_0}{I_R \cos(\Theta_R + \Theta_{R_0})}$ $\int l_{R}^{2} - h_{B}^{2} - (l_{B} - q_{B}) = l_{2} \quad \theta_{R_{0}} = \sin^{-1} \frac{h_{B}}{l_{0}}$ $\frac{l_{B}}{l_{B}} = \frac{l_{R}}{l_{B}} = \frac{l_{R}}{l$

Normalize by Wand la

 $\frac{N_3}{W} = \frac{a_R}{I_R} + \frac{h_R}{I_R} \stackrel{\text{ten}}{=} \left(\theta_R + \theta_{R_0} \right) + \left(\frac{T_3}{W} \frac{r_2}{I_B} \frac{I_B}{I_R} - \frac{\chi}{I_B} \frac{I_B}{I_R} \right) \frac{1}{\cos(\theta_0 + \theta_{R_0})}$

 $\frac{N_B}{W} = 1 - \frac{\alpha_R}{I_R} - \frac{h_R}{I_R} \tan \left(\Theta_R + \Theta_{R_0} \right) + \left(\frac{\lambda}{I_B} \frac{l_B}{I_R} - \frac{T_3}{W} \frac{r_3}{I_B} \frac{l_A}{I_R} \right) \frac{1}{\cos \left(\Theta_R + \Theta_{R_0} \right)}$

 $\frac{N_{i}}{W} = \frac{N_{B}}{W} \left(1 - \frac{q_{B}}{I_{B}} - \frac{h_{B}}{I_{B}} t_{a} - \theta_{B} \right) - \left(\frac{T_{i}}{W} \frac{r_{i}}{I_{B}} + \frac{T_{Z}}{W} \frac{r_{Z}}{I_{B}} \right) \frac{1}{\cos \theta_{B}}$ $\frac{N_2}{W} = \frac{N_B}{W} \left(\frac{q_B}{I_B} + \frac{h_B}{I_B} \tan \theta_B \right) + \left(\frac{T_1}{W} \frac{r_1}{I_B} + \frac{T_2}{W} \frac{r_2}{I_B} \right) \frac{1}{\cos \theta_B}$

Suspension Systems - Current planetary rovers (e.g., MER, MSL) have little or no shock absorption - Notional car suspension e damper)-wheel one wheel first Analyze mz+cz+kz=cz+kz. Undamped force-free solution Z=Z cos w,t m=+ k==0 $-m\omega_{n}^{2}+k=0$ $\ddot{z}=-\ddot{z}\omega_{n}^{2}\cos\omega_{n}t$ $\omega_n = \int_m^k k$

Rover Example MTOT = 500 kg = wheel m = MTOT = 125 kg d = deflection of suspension (at rest) ~ 0.1m Earth Moon $k = \frac{F}{d} = \frac{mg}{d}$ 2000 Nm k 12,250 m $\omega_n = \int_{m}^{k}$ Wn 9.9 rad/sec 4 rad/ $f_0 = \frac{\omega_n}{2\pi}$ 0.64 Hz 1.6 Hz fn derit = critical distance between bumps 4.3m @10kph levit 1.8m (2.8 m/ser) $= \frac{V}{f}$

Multicheel Analysis Responses to two wheels hitting a bump bounce Imo excite both of these mades Equation of Motion $\begin{array}{cccc}
 & Equation of Motion \\
 & (935 uming no damping) \\
 & k_1 & Bounce: m & +k_p (2-l, \theta) + k_r (2+l_2 \theta) = 0 \\
 & k_1 & (5mall angles) \\
 & front \end{array}$ Pitch: Iy & + k, l, (2-l, 0) + k, l2 (2+ 120)=0 front let Iy = mry ry = radius of gyration Solve this set of coupled differential equs $D_{1} = \frac{k_{p} + k_{r}}{m}$ $D_{2} = \frac{k_{r} J_{2} - k_{p} J_{1}}{m}$ $D_{3} = \frac{k_{p} J_{1}^{2} + k_{r} J_{2}^{2}}{I_{y}}$

Rewrite in terms of Di, Dz, P3 Dz = coupling coefficient \ddot{z} + D_1 z + D_2 \dot{z} = 0 Equations are independent if $D_2 = 0 \Rightarrow k_f l_1 = k_r l_2$ $\ddot{\Theta} + D_3 \Theta + \frac{P_2}{r_y^2} = 0$ If Dz=0, force @ CG only produces bounce an = /D, force elsewhere produces pitch $\omega_n = \sqrt{P_3}$ Assume D2 70 $\Theta = \Theta \cos \omega_n t$ Z= Z cos Wat $\begin{pmatrix} D_1 - \omega_n^2 \end{pmatrix} \begin{pmatrix} Z_1 + D_2 \end{pmatrix} \begin{pmatrix} D_2 \end{pmatrix} = 0 \\ D_1 - \omega_n^2 \end{pmatrix} \begin{pmatrix} D_1 - \omega_n^2 \end{pmatrix} \\ \frac{D_2}{r_1^2} \begin{pmatrix} Z_1 + (D_3 - \omega_n^2) \end{pmatrix} \begin{pmatrix} D_2 \end{pmatrix} = 0 \end{pmatrix} \begin{pmatrix} D_2 \\ r_1^2 \end{pmatrix}$ $\begin{array}{c} D_2 \\ D_3 - \omega_n^2 \end{array} = 0$

$$\begin{split} \mathcal{Q}_{n}^{Y} - \left(D_{1} + D_{3}\right) & \mathcal{W}_{n}^{2} + \left(P_{1} D_{3} - \frac{D_{z}^{2}}{r_{y}^{2}}\right) = O \\ \mathcal{W}_{n_{1}}^{2} = \frac{D_{1} + D_{3}}{2} \pm \frac{1}{2} \sqrt{\left(D_{1} + D_{3}\right)^{2} - 4\left(D_{1} P_{3} - \frac{D_{z}^{2}}{r_{y}^{2}}\right)} \\ \vdots (1 \cdot m t \ e^{t} / e^{t} / e^{t} / h^{2} - \frac{1}{\sqrt{t}} \left(D_{1} - D_{3}\right)^{2} + \frac{D_{z}^{2}}{r_{y}^{2}} \\ \mathcal{W}_{n_{2}}^{2} = \frac{D_{1} + D_{3}}{2} - \sqrt{\frac{1}{4} \left(D_{1} - D_{3}\right)^{2} + \frac{D_{z}^{2}}{r_{y}^{2}}} \\ \mathcal{W}_{n_{2}}^{2} = \frac{D_{1} + D_{3}}{2} + \sqrt{\frac{1}{4} \left(D_{1} - P_{3}\right)^{2} + \frac{D_{z}^{2}}{r_{y}^{2}}} \\ \mathcal{E}_{x a m p} / e: \quad k_{f} = k_{r} = 2000 \frac{N/n}{n} \quad (m \cdot n) \\ \mathcal{I}_{1} = l m, \quad \mathcal{I}_{2} = 2m, \quad I = \frac{m / l^{2}}{r_{y}^{2}} \Rightarrow I_{y} = 375 \frac{L}{3} n^{2} \\ D_{1} = \frac{4000}{500} = g \frac{N/m}{k_{5}} = \zeta_{src}^{\frac{1}{2}} \\ D_{2} = \frac{2000 \frac{N}{(2n)} - 2000 \frac{N}{(1n)}}{S^{00} k_{5}} = 4 \frac{N}{k_{5}} = -\frac{4 \frac{M}{r_{src}}^{2}}{r_{src}^{2}} \\ D_{3} = \frac{2000 \frac{N}{(1n)}^{2} + 2000 \frac{N}{(2n)}}{375 \frac{L}{9} n^{2}} = 26 \cdot 7 \frac{\frac{N}{k_{5}} m^{2}}{k_{3} n^{2}} = \zeta_{src}^{\frac{1}{2}} \end{split}$$

-

 $\omega_{n}^{2} = 17.33 \pm 10.43$ $\omega_{n_{1}} = 2.63' \frac{4}{sec} \Rightarrow 0.42 H_{z}$ $\omega_{n_{2}} = 5.67' \frac{4}{sec} \Rightarrow 0.84 H_{z}$

Add in Tire Mass & Stiffness

Sprung Mass
$M_s \ddot{z}_s + C_s (\dot{z}_s - \ddot{z}_u) + k_s (\dot{z}_s - \ddot{z}_u) = 0$
Unsprung Mass
$m_{y} = \frac{1}{2} + (g(z_{y} - z_{s}) + k_{s}(z_{y} - z_{s}))$
+ $C_4 = \frac{1}{2} + k_4 = F(E) = C_4 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
Undamped Force - Free Solutions
$M_s z_s + k_s (z_s - z_u) = 0$
$m_{u} = \frac{1}{2} + k_{s} (z_{u} - z_{s}) + k_{u} = 0$
Zs=Zs cos what Zu=Zin cos what
$ k_s - m_s \omega_n^2 - k_u = 0$
$-k_s = k_s + k_y - m_y \omega_n^2$

$$\begin{split} \omega_{n}^{4} (m_{u} m_{s}) + \omega_{n}^{2} (-m_{s} k_{s} - m_{s} k_{u} - m_{u} k_{s}) + k_{s} k_{u} = 0 \\ \omega_{n_{1}} = \frac{+B_{u}^{4} - \sqrt{B^{2} + 4AC}}{2A} \qquad \omega_{n_{2}} = \frac{B + \sqrt{B^{2} - 4AC}}{2A} \\ A = m_{u} m_{s} \qquad B = m_{s} (k_{s} + k_{u}) + m_{u} k_{s} \qquad C = k_{s} k_{u} \\ E_{x onple} : \qquad m_{s} = 100 \ k_{g} \qquad m_{u} = 25 \ k_{s} \\ k_{s} = 2000 \ N/m \qquad k_{u} = 10,000 \ N/m \\ A = 2500 \ k_{g}^{2} \qquad B = 1.25 \times 10^{6} \ k_{g}^{2}/s_{er}^{2} \qquad C = 2 \times 10^{7} \ N_{m}^{2} \\ \omega_{n_{1}} = 4.76 \ \frac{c_{ad}}{s_{ec}} \Rightarrow 0.8 \ H_{2} \iff Suspension \\ frequency \\ \omega_{n_{2}} = 28.8 \ \frac{r_{ad}}{s_{ec}} \Rightarrow 3.5 \ H_{2} \iff wheel \ \frac{s_{s}+AC}{s_{s}+AC} \\ \end{split}$$