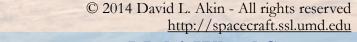
Steering and Tracks

- Side forces on wheel
- Power comparison between skid-steer and ideally steered
- Track systems
- Turning with tracks



Skild Steering

$$R = rolling$$

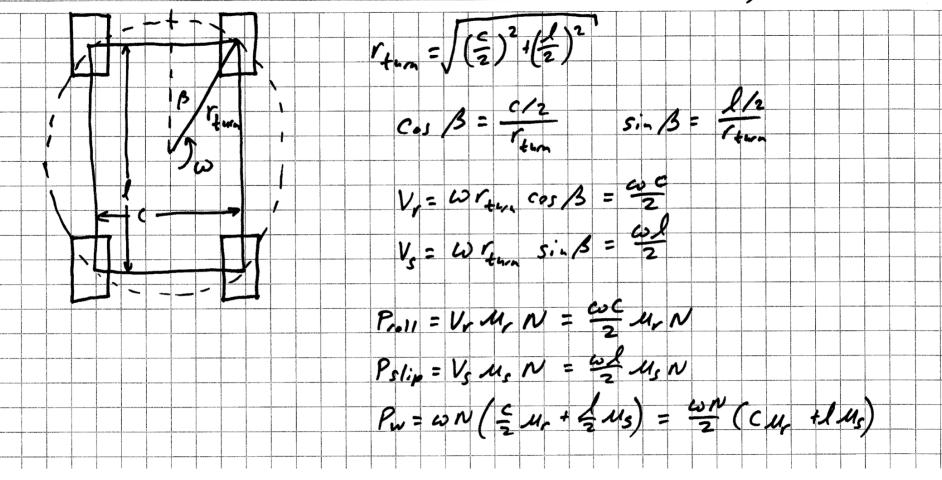
resistance (N)

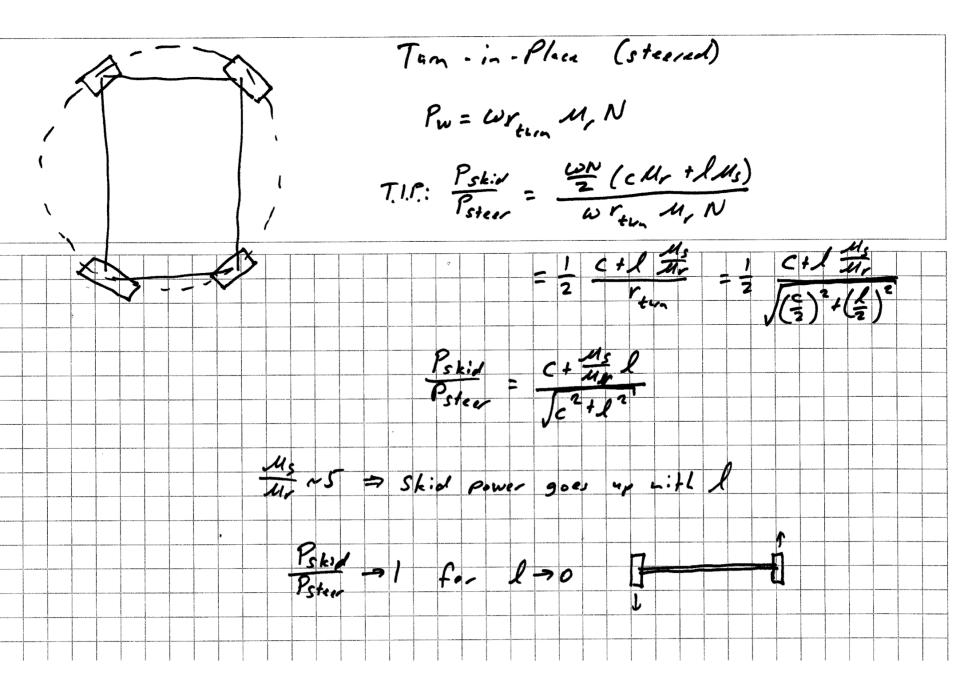
Drive power = $Rv \left(\frac{Nm}{sac} \right) = \left(W \right)$

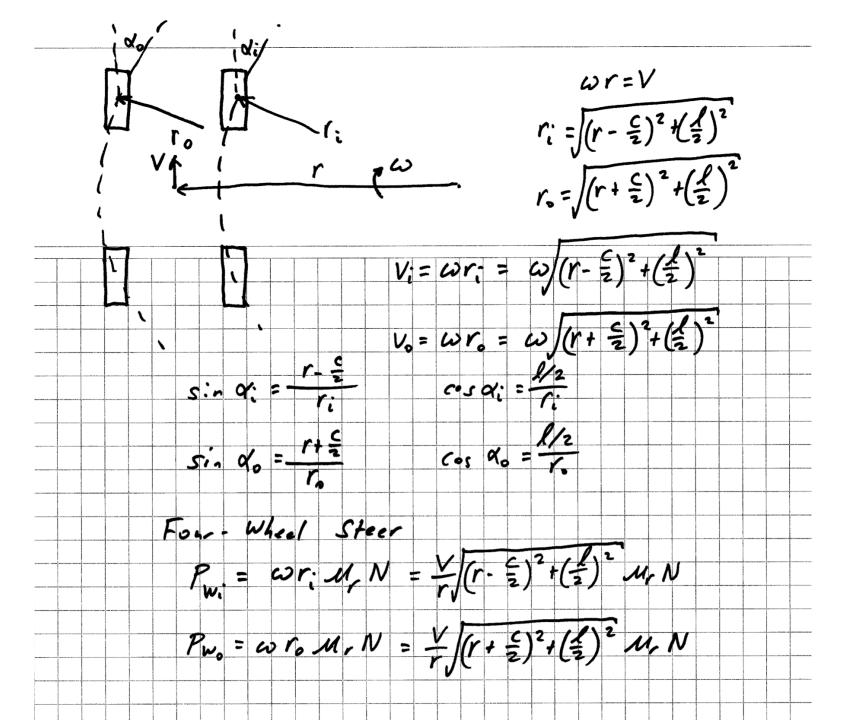
$$P_{Slip} = P_{noll} \quad \text{if} \quad \frac{M_S}{M_T} \sin d = 1$$

$$\frac{M_S}{M_L} \sim 5 \quad \Rightarrow \sin d = 0.2 \quad \Rightarrow \quad \alpha = 11.5^{\circ}$$

Turn in Place (Skid Steer)







$$\frac{P_{skid}}{P_{steer}} = \frac{\frac{V}{r} \left[\frac{d}{2} u_r + (r + \frac{c}{2}) u_s \right] N}{\frac{V}{r} \sqrt{(r + \frac{c}{2})^2 + (\frac{d}{2})^2} u_r N} = \frac{\frac{d}{2} + (r + \frac{c}{2}) \frac{u_s}{u_r}}{\sqrt{(r + \frac{c}{2})^2 + (\frac{d}{2})^2}}$$

1/2 r	+ 2 Mc			,			Ms	
ro	+ 2 Ms		Cos	×0	5,	7 86	Mr	
	Ps	ا ورد						
<u>«</u>	Par	teer.						
0.								
2°	1.1							
50	1. 8	/3						
20°	2.6	55						
30°	3.3							
60°	4.							
90°								

Inner Wheel:
$$P_{r_i} = \omega r_i \cos \alpha_i \mathcal{U}_r N = \frac{V}{r} r_i \frac{l/2}{r_i} \mathcal{U}_r N = \frac{V}{r} \frac{l}{2} \mathcal{U}_r N$$

$$P_{s_i} = \omega r_i \sin \alpha_i \mathcal{U}_s N = \frac{V}{r} r_i \frac{r_i - \frac{C_2}{r_i}}{r_i} \mathcal{U}_s N = \frac{V}{r} (r_i - \frac{c}{2}) \mathcal{U}_s N$$

Outer Wheel:
$$P_r = \omega r_0 \cos \alpha_0 M_r N = \frac{V}{r_0} \frac{1/2}{r_0} M_r N = \frac{V}{2} \frac{1}{2} M_r N$$
 $P_s = \omega r_0 \sin \alpha_0 M_s N = \frac{V}{r_0} \frac{r_0 + S_2}{r_0} M_s N = \frac{V}{r_0} (r + \frac{c}{2}) M_s N$

There wheel: $P_{t+1} = P_{r+1} + P_{s+1} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2} M_r + (r - \frac{c}{2}) M_s \right] N$
 $P_{skid} = \frac{V}{r_0} \left[\frac{1}{2}$

$$r_i = \sqrt{(r+\frac{c}{2})^2 + \ell^2}$$

$$r_o = \sqrt{(r+\frac{c}{2})^2 + \ell^2}$$

$$P_{ip} = \frac{1}{r} (r - \frac{c}{2}) u_r N$$

$$P_{or} = \frac{1}{r} (r + \frac{c}{2}) u_r N$$

$$P_{ip} = \frac{1}{r} (r - \frac{c}{2})^2 \cdot \ell^2 u_r N$$

$$P_{op} = \frac{1}{r} \sqrt{(r + \frac{c}{2})^2 \cdot \ell^2 u_r N}$$

$$P_{op} = \frac{1}{r} \sqrt{(r + \frac{c}{2})^2 \cdot \ell^2 u_r N}$$

$$P_{op} = \frac{1}{r} \sqrt{(r + \frac{c}{2})^2 \cdot \ell^2 u_r N}$$

Wheel- Soil Interaction in Turn

Soil entry angle
$$\theta_{f} = cos^{2}(1 - \frac{c_{min}}{r})$$

exit angle $\theta_{r} = cos^{2}(1 - \lambda \frac{c_{min}}{r})$
 $\lambda = \text{wheel sinkage ratio}$

$$= 0 \text{ when no soil restitution eccus}$$

$$= 1 \text{ if soil completely resources (static sinkage)}$$

$$= 1 \text{ if soil is transported to Lack of Lack of$$

Soil Deformations
$$j_{x}(\theta) = r \left[\theta_{f} - \theta - (1-s)(sin \theta_{f} - sin \theta) \right]$$

$$j_{y}(\theta) = r (1-s)(\theta_{f} - \theta) tin d$$
Resolve into orthogonal forces

Draw bor poll

Fx = rb
$$\int_{\theta_{T}}^{\theta_{T}} \{T_{x}(\theta)co,\theta-\delta(\theta)si,\theta\}d\theta$$

Side force

Fy = $\int_{\theta_{T}}^{\theta_{T}} \{T_{x}(\theta)co,\theta-\delta(\theta)si,\theta\}d\theta$

Function

Fig. 200 side loads generated under the third

Fig. 200 side loads generated by belledozing the solution of t

Tracked Vehicles

De

Bekker soil sinks equation $P = k z_{o}^{n} = \left(\frac{k_{c}}{b} + k_{B}\right) z_{o}^{n} \Rightarrow z_{o} = \left(\frac{P}{k_{c}/B + k_{B}}\right)^{1/n}$

Uniform Pressure => P= = = W (A=bl)

Maximum tractive effort Frax determined by terrain shear streagh Track and contact areas A

Fmax = A Tmax = A (c+Ptan Ø) = Ac+Wton Ø

Sandy	_ <u> </u>	• (•				1				7-X		Ť	T	T	- 5		1			Ī	/	_ /	1			
							F	x	~	0.	7	W								ta-							
C/2,	50	:1	:	ø	70)		'							no		ff.	c+	of		Ne	ور	4	<u>-</u>		_	
									7	وره	20		د و	<i>†</i> • ¢	1	47	٤. •	>	1.	.ء		4.	, , ,	•			
Slip	de	1:	n i f	:0-	f	,_	4	-61	6																		
					<i>i</i> =	/-	rw	:	1	-	レル	:	=	V	\ <u>\</u>	-	V, V.	•				_	_	_			
	r	4	1	Per	1	- 1	1	1																			
-				Space											4	·	e h	Je	6	n	0 7	-10	h				
				, ,		-																					
Since	1 1	į												1							İ	c.	ر.	1.	. L	ب کس	he
Distance	-						_	-			<u> </u>	-															
Distant		F	ch	•	1 =	V;	t	'	t:	+ 7	17.				=	-} -	_	Ŧl	X			X=	l	4	- 2	e /	_

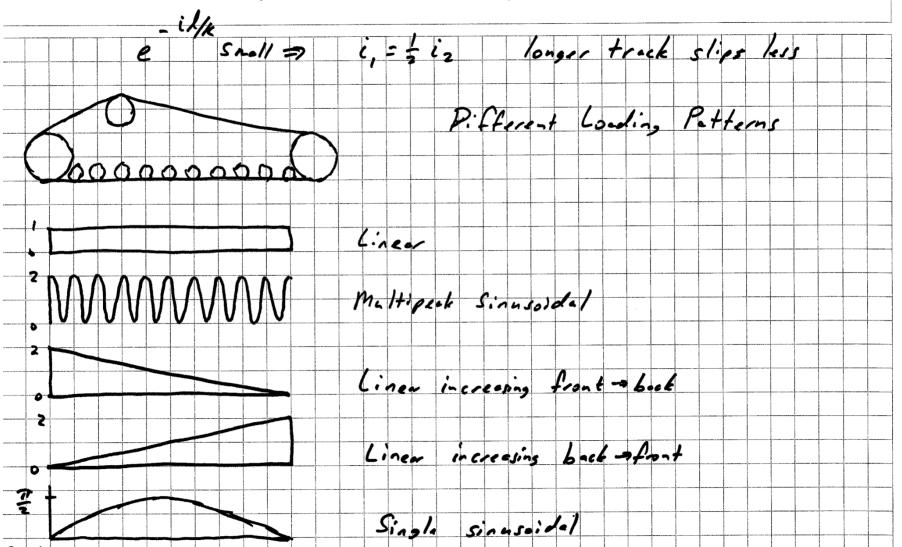
From soil mechanics, $T = T_{max} (1 - e^{-j/K}) = (C+P + en B) (1 - e^{-j/K})$ T = shear stress j= shear displacement K= show deformation modules

Total tractive effort F=6 stardx

F=6 s(c+p tang)(1-e x)dx For normal distribution $P = \frac{W}{bl}$ everywhere $F = b \int (c + \frac{W}{bl} to - 0) (1 - e^{-\frac{(x/k)}{bl}}) dx$ = (Ac+w+= 0) [1-il (1-e) (Taylor's Series: for \$/k snell, 1-1 = e 1/2 1-7] become, [1- # (1-1+ =)] = 0/ for 100% slip 100% slip F= Actwton 8

Consider two vehicles: A,=Az, W,=Wz, but l=2le so b,=6% 2

Set tractive forces to be the some



Example: 2 vehicles @ 135EN=W Terrain: n=1.6 k= 4.37 km2.6 kg = 196.72 km2.6 K=5cm c=1.0 kPa d=19.7° A = 7.2 m2 (both) unit A: b=1m 1=3.6m Unit 8: 6=0.8m l=4.5m $20 = \left(\frac{P}{k_0}\right)^{\frac{1}{2}} = \left(\frac{135}{4.32}\right)^{0.625} = 0.227m$ Sinkage Un. 7 A: $R_c = 26 \left(\frac{k_c}{5} + k_w\right) \frac{20^{n+1}}{n+1} = 3.28 k N$ Unit B: 20 = 0.226m Re= 2.6 kN Franc (unit A) = 26lc + Wtan 0 = 2×1×3.6×1 + 135×0.358 = 55.54 LN Thrust Values 40.54 43.32 47.84 49.37 20% 51.68 52.46 54.0 53.62 40% 54.51 60% 54.25 54.57 54.77 80%

Effect of Track Loading Patterns

Assume frictional soil (c70)

Multipeak sinusoidal pressure P= W (1+ cos 2011x) n= dof pools 7 = 60 to 0 (1+c. 2 m) (1-e k) F=6 | w tand (1+ cos 2mnx) (1-e k) dx F=W to- 0 [1+ ip (e -1) + il(1+4n2k2 222 Increasing linearly front +>6 och P= 2 10 7 F=W+-- Ø[1-2(5)2/1-e

Increasing lineary Back- Front P=2 \(\frac{1-x}{x}\)
F=2 \(\text{W tan } \psi \left[1-\frac{1}{12} \left(1-e \) \right] -W tan \(\psi \left[1-2 \left(\frac{1}{12} \right)^2 \left(1-e \) \(\frac{1}{12} \right)^2 \left(1-e \) Single sinu soid, D of front and book

Steering of Tracked Vehicles

m d25 = F. + F; - Rtot $I_2 \frac{\int_{-1}^{2\theta}}{\int_{-1}^{2}} = \frac{8}{3} (F_0 - F_1) - m_1$ Mr = moment due to turning resistance Under steady-state conditions (no acceleration) Fo + Fi - Rto + = 0 B (F. - F.) - Mr = 0 MEM F. = Rest + mr = 4.W + mr F: = Root - Mr = Mr W - Mr For a normal pressure profile uniformly distributed Lateral resistance Ro = 1/2 1 My depends on soil and track design: Steel Tracks, Had grand: 0.55-0.58 fill grows 0.87-1.11 gras Rubber Trucks hand ground: 0.65-0.66 0.67-1.14 9145

$$M_{r} = 4 \frac{WM_{t}}{2I} \int_{0}^{1/2} x \, dx = \frac{M_{t}WI}{4}$$

$$F_{0} = \frac{M_{r}W}{2} + \frac{M_{t}WI}{4B}$$

$$Vehicle with unsferm normal pressur-de distribution throwing at low spend on level ground.

$$F_{i} = \frac{M_{r}W}{2} - \frac{M_{t}WI}{4B}$$

$$Vehicle with unsferm normal pressur-de distribution throwing at low spend on level ground.$$$$

Outside track: Fo & cbl + wton & 2 + 48 & c6l + w60-18 Massage to get 1 (4cA +2 +an \$ -2 ur) without spinning outside track, # = = (c + tm 0 - u) = = (2 c b l ; ta - v - u)

Soundy terrain c=0 $6=30^{\circ}$ $M_{\xi}=0.5$ $M_{\xi}=0.1$ $E \leq 1.9$

Clay soil c= 3.45 kPa Ø=10° P= 6.9 kPa (=1psi)

$$\frac{1}{8} \leq 2.88$$

$$F_{i} = \frac{u_{i}}{2} \frac{W}{48} \Rightarrow \frac{M_{e}}{28} \leq M_{f} P_{o} - F_{i} = 0$$

$$M_{e} = 0.5 M_{i} = 0.1 \quad \begin{cases}
\theta = 1.5 \\
\theta = 1.5
\end{cases} \Rightarrow (1.5) = 0.375 \times 0.1$$

$$\Rightarrow inside track has to brake to turn$$

$$Max thrust of outside track is principled by terraln$$

$$\Rightarrow brakin, inner track of ininishes steering, DP$$

Tracked Vehich Steering Example $W=155.7\,kN\,(75,000\,l)$ $B=203.2\,cm$ $L=304.8\,cm$ $b=76.2\,cm$ $c=3.45\,kR$ $d=25^{\circ}$ $u_r=0.15$ $u_{\pm}=0.5$

Kinematics of Tracked Skid Steering

Outside drive wheel turns at wo

Assume tracks do not skid or slip Turn radius R you velocity Da By similar triangles R+= = Vi = VOR-VOZ=ViR+ViZ R= B Vo+Vi dive spocket radius r V= wr $R = \frac{R}{2} \frac{\omega_0 r + \omega_1 r}{\omega_0 r - \omega_1 \rho} \qquad K_s = \frac{\omega_0}{\omega_1}$ (0r+4): r 40, r-42; r Da= ra, + ra; = ra; (Ks-1) Outside track always thrusts = always slips $R = \frac{B[r\omega_o(1-i_o)+r\omega_i(1-i_i)]}{2[r\omega_o(1-i_o)-r\omega_i(1-i_o)]}$ = B[Ks (1.i.) + (1-i.)] 11-7

$$\mathcal{N}'_{2} = \frac{r \, \omega_{\circ}(1 - i_{o}) + r \, \omega_{\circ}(1 - i_{o})}{2R \, \Omega'_{z}} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{i})}{2R'}$$

$$= \frac{r \, \omega_{\circ} \left[K_{s} \left(1 - i_{o} \right) - 1 - \left(i_{o} \right) \right]}{R} = \frac{r \, \omega_{i} \left[K_{s} \left(1 - i_{o} \right) - 1 - i_{i} \right]}{R}$$

$$= \frac{R'}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o} \left[K_{s} \left(1 - i_{o} \right) - 1 - i_{i} \right]}{R}$$

$$= \frac{R'}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{i}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_{o}(1 - i_{o}) + r \, \omega_{o}(1 - i_{o})}{R} = \frac{r \, \omega_$$