
Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug Algorithms and Path Planning

• Discussion of term projects
• A brief overview of path planning
• Various “bug”-inspired (i.e., dumb) algorithms
• Path planning and some smarter algorithms

1

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Term Design Projects

• Astronaut assistance rover
• Sample collection rover
• Minimum pressurized exploration rover
• Others by special request
• Details and top-level requirements are in slides for

Lecture #01

2

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

What Can You Do? Trade Studies on...

• Number, size, placement of wheels
• Steering system
• Suspension system
• Motors and gears (coming up)
• Energetics (coming up)
• Static and dynamic stability
• Innovative solutions (legs? articulated

suspensions?)

3

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Path Planning with Obstacles

4

Starting  
Point

Obstacles

Goal

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Path Planning with Bug Algorithms

• Loosely model path planning on insect capabilities
• Assumption is that rover knows its position, goal

position, and can sense (at least locally) obstacles
• “Bug 0” algorithm:

– Head towards goal
– Follow obstacles until you can head to the goal again
– Repeat until successful

5

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Basic Bug 0 Strategy

6

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

An Obstacle that Confounds Bug 0

7

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Improve Algorithm by Adding Memory

• Add memory of
past locations

• When encountering
an obstacle,
circumnavigate and
map it

• Then head to goal
from point of
closest approach

• “Bug 1” algorithm

8

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Implementation of Bug 1

9

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 1 Path Bounds
• D=straight-line

distance from start to
goal

• Pi=perimeter of ith
obstacle

• Lower Bound:
shortest distance it
could travel

• Upper Bound:
longest distance it
might travel

10

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 1 Upper and Lower Bounds

11

• Lower Bound:
!
!

• Upper Bound:

D

D + 1.5
X

i

Pi

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Showing Bug 1 Completeness
• An algorithm is complete if, in finite time, it finds a path if

such a path exists, or terminates with failure if it does not
• Suppose Bug 1 were incomplete

– Therefore, there is a path from start to goal
• By assumption, it is finite length, and intersects obstacles a finite number of

times
– Bug 1 does not find the patch

• Either it terminates incorrectly, or spends infinite time looking
• Suppose it never terminates

– Each leave point is closer than the corresponding hit point
– Each hit point is closer than the previous leave point
– There are a finite number of hit/leave pairs; after exhausting them, the robot will

proceed to the goal and terminate
• Suppose it terminates incorrectly - the closest point after a hit must be a leave

– But the line must intersect objects an even number of times
– There must be another intersection on the path closer to the object, but we must

have passed this on the body, which contradicts definition of a leave point

• Therefore Bug 1 is complete

12

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 2 Algorithm

13

• Create an m-line
connecting the starting and
goal points

• Head toward goal on the
m-line

• Upon encountering
obstacle, follow it until you
re-encounter the m-line

• Leave the obstacle and
follow m-line toward goal

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

But This Bug 2 Doesn’t Always Work

• In this case,  
re-encountering the  
m-line brings you back
to the start

• Implicitly assuming a
static strategy for
encountering the
obstacle (“always turn
left”)

14

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 2 Algorithm

• Head toward the goal on
the m-line

• If an obstacle is
encountered, follow it
until you encounter the
m-line again closer to the
goal

• Leave the obstacle and
continue on m-line
toward the goal

15

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Comparison of Bug 1 and Bug 2

16

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 1 vs. Bug 2

• Bug 1 is an exhaustive search algorithm - it looks
at all choices before commiting

• Bug 2 is a greedy algorithm - it takes the first
opportunity that looks better

• In many cases, Bug 2 will outperform Bug 1, but
• Bug 1 has a more predictable performance overall

17

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Bug 2 Upper and Lower Bounds

18

• Lower Bound:
!
!

• Upper Bound:

D

D +
X

i

ni
Pi

2

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

More Realistic Bug Algorithm

• Knowledge of
– Goal point location (global beacons)
– Wall following (contact sensors)

• Add a range sensor (with limited range and noise)
• Focus on finding endpoints of finite, continuous

segments of obstacles

19

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

More Realistic Algorithm - Tangent Bug

20

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Implementation of Tangent Bug

21

Choose the target point O
i

that minimizes

dxO
i

+

\O
i

q
goal

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Encountering Extended Obstacles

22

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Path Planning

• How do we get to where we want to go?
• Gridded workspaces
• Formal search methods (e.g., Dijkstra)
• Heuristic search methods (e.g., Best-First)
• Hybrid search methods (A* and variants)

23

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Path Planning - Potentials and Pitfalls

24

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Avoid Entering Enclosed Spaces

25

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Convert (Planar) Space into Grid

26

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Dijkstra’s Algorithm

• Examine closest vertex not yet examined
• Add new cell’s vertices to vertices not yet

examined
• Expand outward from starting point until you

reach the goal cell
• Guaranteed to find a shortest path (could be

multiple equally short paths existing)...
• ...as long as no path elements have negative cost

27

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Dijkstra’s Algorithm

28

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Greedy Best-First-Search Algorithm

• Assumes you have an estimate (“heuristic”) of
how far any given element is from goal

• Continue to scan closest adjacent vertices to find
closest estimated distance from goal

• Is not guaranteed to find a shortest path, but is
faster than Dijkstra’s method

29

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Greedy Best-First-Search Algorithm

30

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Dijkstra’s Method with Concave Obstacle

31

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Best-First Search with Concave Obstacle

32

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Comments on Concave Obstacle

• Dijkstra’s method still produces shortest path, but
a large area of the grid has to be searched

• Best-First method is quicker, but produces more
inefficient path (“greedy” algorithm drives to goal
even in presence of surrounding obstacle)

• Ideal approach would be to combine formal
comprehensive (Dijkstra) and heuristic (Best-First)
approaches

• A* - uses heuristic approach to finding path to
goal while guaranteeing that it’s a shortest path

33

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Unconstrained A* Path Solution

34

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

A* Solution with Concave Obstacle

35

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Implementation of A*

• g(n) is cost of the path from the starting point to
any examined point on map

• h(n) is heuristic distance estimate from point on
map to goal point

• Each loop searches for vertex (n) that minimizes  
f(n)=g(n)+h(n)

36

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Effect of Heuristic Accuracy
• If h(n)=0, only g(n) is present and A* turns into

Dijkstra’s method, which is guaranteed to find a
minimum

• If h(n) is smaller than actual distance (“admissible”),
still guaranteed to find minimum, but the smaller h(n)
is, the larger the search space and slower the search

• If h(n) is exact, get an exact answer that goes directly
to the goal

• If h(n) is greater than real distance, no longer
guaranteed to produce shortest path, but it runs faster

• If g(n)=0, only dependent on h(n) and turns into
Best-First heuristic algorithm

37

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Insights into A* Path Planning

• You don’t need a heuristic that’s exact - you just
need something that’s close

• Non-admissible heuristics (h(n)>exact value) don’t
guarantee shortest path but do speed up solutions

• “Cost” of movement can be whatever metric
you’re most concerned about - e.g., slope or soil

• If flat area has movement cost of 1 and slopes
have movement cost of 3, search will propagate
three times as fast in flat land as in hilly areas

• g(n) and h(n) need to have the same units

38

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Heuristic Estimation - Manhattan Distance

39

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Heuristic Estimation - Chebyshev Distance

40

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

A* Variations

• Dynamic A* (“D*”)
– A* works if you have perfect knowledge
– D* allows for correcting knowledge errors efficiently

• Lifelong Planning A* (“LPA*”)
– Useful when travel costs are changing

• Both approaches allow reuse of A* data, but
require storage of all A* parameters
– Storage requirements become prohibitive when moving

obstacles are present

41

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Grid Representations

42

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Polygonal Map Representations

43

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Full Path Specification

44

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Simplified Mesh Representation

45

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Acknowledgments

Most of the material relating to path planning comes
from Amit Patel from the Standford Computer
Science department: 
theory.stanford.edu/~amitp/GameProgramming/

46

http://theory.stanford.edu/~amitp/GameProgramming/

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Mapping
• Why do we map?!
• Spatial decomposition!
• Representing the robot!
• Current challenges

47

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Mapping
• Represent the environment around the robot!
• Impacted by the robot position representation!
• Relationships!

– Map precision must match application!
– Precision of features on map must match precision of

robot’s data (and hence sensor output)!
– Map complexity directly affects computational

complexity and reasoning about localization and
navigation!

• Two basic approaches!
– Continuous!
– Decomposition (discretization)

48

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Environment Representation
• Continuous metric - x, y, theta!
• Discrete metric - metric grid!
• Discrete topological - topological grid!
• Environmental modeling!

– Raw sensor data - large volume, uses all acquired info!
– Low level features (e.g., lines, etc.) - medium volume,

filters out useful info, still some ambiguities!
– High level features (e.g., doors, car) - low volume, few

ambiguities, not necessarily enough information

49

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Continuous Representation
• Exact decomposition of environment!
• Closed-world assumption!

– Map models all objects!
– Any area of map without objects has no objects in

corresponding environment!
– Map storage proportional to density of objects in

environment!

• Map abstraction and selective capture of features
to ease computational burden

50

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Continuous Representation
• Match map type with sensing device!

– e.g., for laser range finder, may represent map as a series
of infinite lines!

– Fairly easy to fit laser range data to series of lines

51

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Continuous Representation
• In conjunction with position representation!

– Single hypothesis: extremely high accuracy possible!
– Multiple hypothesis: either!

• Depict as geometric shape!
• Depict as discrete set of possible positions!

• Benefits of continuous representation!
– High accuracy possible!

• Drawbacks!
– Can be computationally intensive!
– Typically only 2D

52

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Decomposition
• Capture only the useful features of the world!
• Computationally better for reasoning, particularly

if the map is hierarchical

53

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Exact Cell Decomposition
• Model empty areas with geometric shapes!
• Can be extremely compact (18 nodes here)!
• Assumption: robot position within each area of

free space does not matter

54

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Fixed Cell Decomposition
• Tesselate world - discrete approximation!
• Each cell is either empty or full!
• Inexact (note loss of passageway on right)

55

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Adaptive Cell Decomposition
• Multiple types of adaptation: quadtree, BSP, etc.!
• Recursively decompose until a cell is completely

free or full!
• Very space efficient compared to fixed cell

56

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Types of Adaptation
• BSP (only horizontal/vertical lines)

57

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND 58

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND 59

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND 60

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND 61

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND 62

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Occupancy Grid
• Typically fixed decomposition!
• Each cell is either filled or free (set threshold for

determining “filled”)!
• Particularly useful with range sensors!

– If sensor strikes something in cell, increment cell counter!
– If sensor strikes something beyond cell, decrement cell

counter!
– By discounting cell values with time, can deal with

moving obstacles!
• Disadvantages!

– Map size a function of sizes of environment and cell!
– Imposes a priori geometric grid on world

63

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Occupancy Grid
Darkness of cell proportional to counter value

64

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Topological Decomposition
• Use environment features most useful to robots!
• Generates a graph specifying nodes and

connectivity between them !
– Nodes not of fixed size; do not specify free space!
– Node is an area the robot can recognize its entry to and

exit from

65

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Topological Example
For this example, the robot must be able to detect
intersections between halls, and between halls and
rooms

66

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Topological Decomposition
• To robustly navigate with a topological map a

robot!
– Must be able to localize relative to nodes!
– Must be able to travel between nodes!

• These constraints require the robot’s sensors to be
tuned to the particular topological decomposition!

• Major advantage is ability to model non-geometric
features (like artificial landmarks) that benefit
localization

67

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Map Updates: Occupancy Grids
• Occupancy grid!

– Each cell indicated probability of free space/occupied!
– Need method to update cell probabilities given sensor

readings at time t!

• Update methods!
– Sensor model!
– Bayesian!
– Dempster-Shafer

68

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Representing the Robot
• How does the robot represent itself on the map?!
• Point-robot assumption!

– Represent the robot as a point!
– Assume it is capable of omnidirectional motion!

• Robot in reality is of nonzero size!
– Dilation of obstacles by robot’s radius!
– Resulting objects are approximations!
– Leads to problems with obstacle avoidance

69

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Current Challenges
• Real world is dynamic!
• Perception is still very error-prone!

– Hard to extract useful information!
– Occlusion!

• Traversal of open space!
• How to build up topology!
• This was all two-dimensional!!
• Sensor fusion

70

Mapping
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O F
MARYLAND

Acknowledgements
• Thanks to Steven Roderick for originally

developing this lecture!
• “Introduction to Autonomous Mobile Robots”

Siegwart and Nourbaksh!
• “Mobile Robotics: A Practical Introduction”

Nehmzow!
• “Computational Principles of Mobile Robotics”

Dudek and Jenkin!
• “Introduction to AI Robotics” Murphy

71

