Bug Algorithms and Path Planning

* Discussion of term projects
* A briet overview of path planning
* Various “bug’-inspired (i.e., dumb) algorithms

* Path planning and some smarter algorithms

&@ ;3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND | ENAE 788X - Planetary Surface Robotics

Term Design Projects

* Astronaut assistance rover

* Sample collection rover

* Minimum pressurized exploration rover
* Others by special request

* Details and top-level requirements are in slides for
Lecture #01

&ﬁ ;3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

2

What Can You Do? Trade Studies on...

* Number, size, placement of wheels
* Steering system

* Suspension system

* Motors and gears (coming up)

* Energetics (coming up)

* Static and dynamic stability

* Innovative solutions (legs? articulated

suspensionsr)
@ DIV RIS SO Bug Algorithms and Path Planning
= MARYLAND ENAE 788X - Planetary Surface Robotics

3

Path Planning with Obstacles

O
Goal
Obstacles
O
Starting
Point
@ UNTVER SIEIS O Bug Algorithms and Path Planning
N // M ARYL AND ENAE 788X - Planetary Surface Robotics

4

Path Planning with Bug Algorithms

* Loosely model path planning on insect capabilities

* Assumption 1s that rover knows its position, goal
position, and can sense (at least locally) obstacles

* “Bug 0” algorithm:
— Head towards goal

— Follow obstacles until you can head to the goal again

— Repeat until successtul

&ﬁ :3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

5

Basic Bug 0 Strategy

e
/
.
s
r
{

®_ assume a left-
turning robot

The turning direction might
be decided beforehand...

A& UNIVERSITY OF Bug Algorithms and Path Planning

W MARYLAND ENAE 788X - Planetary Surface Robotics

An Obstacle that Confounds Bug 0

® start

@ UNTVER STISY-O'F Bug Algorithms and Path Planning

MARYLAND

- ENAE 788X - Planetary Surface Robotics

Improve Algorithm by Adding Memory

* Add memory of
past locations

* When encountering
an obstacle,
circumnavigate and
map it

* Then head to goal
from point of
closest approach

* “Bug 1” algorithm

/@)/ UNTVERSTIEB=OF Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

8

Implementation of Bug 1

[—|

° o

L_,_’_’lA
.,—

A& UNIVERSITY OF Bug Algorithms and Path Planning

W) MARYLAND ENAE 788X - Planetary Surface Robotics

9

Bug 1 Path Bounds

* D=straight-line
distance from start to

goal

* Pi=perimeter of sth

/ obstacle
) - :
/D P, Lower Bognd.

shortest distance it

/ could travel
/ ; * Upper Bound:

P, longest distance it

might travel
@ VL S e Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

10

Bug 1 Upper and Lower Bounds

&

UNTV_E R SEETSY OFE

MARYLAND

e [Lower Bound:

D

* Upper Bound:
D+15% P,

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

Showing Bug 1 Completeness

* An algorithm is complete i, in tinite time, it finds a path if
such a path exists, or terminates with failure if it does not

* Suppose Bug 1 were incomplete

— Therefore, there is a path from start to goal

* By assumption, it 1s finite length, and intersects obstacles a finite number of
times

— Bug 1 does not find the patch

* Either it terminates incorrectly, or spends infinite time looking
* Suppose it never terminates
— Each leave point is closer than the corresponding hit point
— Each hit point is closer than the previous leave point
— There ate a finite number of hit/leave pairs; after exhausting them, the robot will
proceed to the goal and terminate
* Suppose it terminates incorrectly - the closest point after a hit must be a leave
— But the line must intersect objects an even number of times
— There must be another intersection on the path closer to the object, but we must
have passed this on the body, which contradicts definition of a leave point

* Therefore Bug 1 is complete
@ UNTVE RSSO Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

12

Bug 2 Algorithm

m-line i
e (Create an m-line

connecting the starting and
goal points

* Head toward goal on the
m-line

* Upon encountering
obstacle, follow it until you
re-encounter the m-line

e [.eave the obstacle and
follow m-line toward goal

/@)/ UNTVERSTIEB=OF Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

But This Bug 2 Doesn’t Always Work

e In this case,
re-encountering the
m-line brings you back
to the start

Start »

7 * Implicitly assuming a
- static strategy for
encountering the
obstacle (“always turn

/ left”)

/@)/ UNI V ERSITY OF Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

|4

Bug 2 Algorithm

* Head toward the goal on
Start the m-line

e If an obstacle is
encountered, follow it

; until you encounter the

| m-line again closer to the

goal

o I
o

I.eave the obstacle and
continue on m-line
toward the goal

O:
Goal
@ UNTVER SIEIS O Bug Algorithms and Path Planning
) M ARYL AND ENAE 788X - Planetary Surface Robotics

Comparison of Bug 1 and Bug 2

Bug 2 beats Bug 1 Bug 1 beats Bug 2

/"

A& UNIVERSITY OF Bug Algorithms and Path Planning

W MARYLAND

= ENAE 788X - Planetary Surface Robotics

Bug 1 vs. Bug 2

Bug 1 is an exhaustive search algorithm - it looks
at all choices before commiting

Bug 2 1s a greedy algorithm - it takes the first
opportunity that looks better

In many cases, Bug 2 will outperform Bug 1, but

Bug 1 has a more predictable performance overall

UNTVE RSSO Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

i

Bug 2 Upper and Lower Bounds

e [Lower Bound:

D

* Upper Bound:

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

18

More Realistic Bug Algorithm
* Knowledge of

— Goal point location (global beacons)

— Wall following (contact sensors)
* Add a range sensor (with limited range and noise)

* Focus on tinding endpoints of finite, continuous
segments of obstacles

&ﬁ ;3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

19

More Realistic Algorithm - Tangent Bug

@ UNTVE R SIS OE Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

20

Implementation of Tangent Bug

g 5%

.
- - -

— e
Choose the target point O; that minimizes xO; + O;qg0a1
UNTVERSTISV=OF Bug Algorithms and Path Planning

' MARYLAND

T ENAE 788X - Planetary Surface Robotics

Encountering Extended Obstacles

~
S
S
\
\
\
\
\
\
\
\
\
1

-,

Y NV E RESIEISEOTE Bug Algorithms and Path Planning

| ,// M ARYL AND ENAE 788X - Planetary Surface Robotics

iy

Path Planning

* How do we get to where we want to gor
* Gridded workspaces

* Formal search methods (e.g., Dijkstra)

* Heuristic search methods (e.g., Best-First)
* Hybrid search methods (A* and variants)

&ﬁ :3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

23

Path Planning - Potentials and Pitfalls

@ UNTVE R STEESEOTE Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

24

Avoid Entering Enclosed Spaces

virtual obstacle

@ UNTVE R STEESEOTE Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

25

Convert (Planar) Space into Grid

—
—_—
—_—
—

—

—_—
—
—_—
—
—_—

—_—
—
—_—
—
—

—
—_—
—_—
—
—

Y NV E RESIEISEOTE Bug Algorithms and Path Planning

| ,// M ARYL AND ENAE 788X - Planetary Surface Robotics

26

Dijkstra’s Algorithm

Examine closest vertex not yet examined

Add new cell’s vertices to vertices not yet
examined

Expand outward from starting point until you
reach the goal cell

Guaranteed to find a shortest path (could be
multiple equally short paths existing)...

...as long as no path elements have negative cost

UNTVE RSSO Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

7

Dijkstra’s Algorithm

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

28

Greedy Best-First-Search Algorithm

* Assumes you have an estimate (“heuristic”’) of
how tar any given element is from goal

* Continue to scan closest adjacent vertices to find
closest estimated distance from goal

* Is not guaranteed to find a shortest path, but is
faster than Dijkstra’s method

:3/ UNIVERSITY OF Bug Algorithms and Path Planning
&@ i

M ARYL AND ENAE 788X - Planetary Surface Robotics

29

Greedy Best-First-Search Algorithm

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

30

Dijkstra’s Method with Concave Obstacle

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

31

Best-First Search with Concave Obstacle

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

32

Comments on Concave Obstacle

* Dijkstra’s method still produces shortest path, but
a large area of the grid has to be searched

* Best-First method is quicker, but produces more
inefficient path (“greedy’ algorithm drives to goal
even in presence of surrounding obstacle)

* Ideal approach would be to combine formal
comprehensive (Dijkstra) and heuristic (Best-First)
approaches

* A* - uses heuristic approach to finding path to
goal while guaranteeing that it’s a shortest path

@ :3/ UNTVE RSERY, OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

33

Unconstrained A* Path Solution

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

34

A* Solution with Concave Obstacle

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

35

Implementation of A*

* o(n) 1s cost of the path from the starting point to
any examined point on map

* h(n) is heuristic distance estimate from point on
map to goal point
* FEach loop searches for vertex (n) that minimizes

t(n)=g(n)+h(n)

:3/ UNIVERSITY OF Bug Algorithms and Path Planning
&@ i

M ARYL AND = ENAE 788X - Planetary Surface Robotics

Effect of Heuristic Accuracy

* If h(n)=0, only g(n) is present and A* turns into
Dijkstra’s method, which 1s guaranteed to find a
minimum

* If h(n) is smaller than actual distance (“admissible™),
still guaranteed to find minimum, but the smaller h(n)
is, the larger the search space and slower the search

* If h(n) 1s exact, get an exact answer that goes directly
to the goal

* If h(n) 1s greater than real distance, no longer
guaranteed to produce shortest path, but it runs faster

e If g(n)=0, only dependent on h(n) and turns into

Best-First heuristic algorithm
@ UNTVE R STEIS-OT Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

37

Insights into A* Path Planning

* You don’t need a heuristic that’s exact - you just
need something that’s close

* Non-admissible heuristics (h(n)>exact value) don’t
guarantee shortest path but do speed up solutions

* “Cost” of movement can be whatever metric
you’re most concerned about - e.g., slope or soil

* If flat area has movement cost of 1 and slopes
have movement cost of 3, search will propagate
three times as fast in flat land as in hilly areas

* o(n) and h(n) need to have the same units

@ :3/ UNTVE RSERY, OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

38

Heuristic Estimation - Manhattan Distance

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

39

Heuristic Estimation - Chebyshev Distance

A& UNIVERSITY OF Bug Algorithms and Path Planning

S MARYLAND ENAE 788X - Planetary Surface Robotics

40

A* Variations

* Dynamic A* (“D*”)
— A* works if you have perfect knowledge

— D* allows for correcting knowledge errors efficiently
* Lifelong Planning A* (“LPA*”)
— Usetul when travel costs are changing
* Both approaches allow reuse of A* data, but
require storage of all A* parameters

— Storage requirements become prohibitive when moving
obstacles are present

&@ :3/ UNIVERSITY OF Bug Algorithms and Path Planning

M ARYL AND ENAE 788X - Planetary Surface Robotics

4]

Grid Representations

/\

AA%’

SRR
A A‘“‘Q’VQ’
LS

sy UNIVERSITY OF Bug Algorithms and Path Planning

| Y/ M ARYL AND ENAE 788X - Planetary Surface Robotics

42

Polygonal Map Representations

Y NV E RESIEISEOTE Bug Algorithms and Path Planning

| Y/ M ARYL AND ENAE 788X - Planetary Surface Robotics

43

Full Path Specification

A& UNIVERSITY OF Bug Algorithms and Path Planning

W) MARYLAND ENAE 788X - Planetary Surface Robotics

44

Simplified Mesh Representation

/

(/‘

@ UNTVE R SIS OE Bug Algorithms and Path Planning

MARYLAND ENAE 788X - Planetary Surface Robotics

45

Acknowledgments

Most of the material relating to path planning comes
from Amit Patel from the Standford Computer

Science department:

theory.stanford.edu/~amit

b/GameProgramming/

@ UNIVERSITY OF
W/ MARYLAND

46

Bug Algorithms and Path Planning
ENAE 788X - Planetary Surface Robotics

http://theory.stanford.edu/~amitp/GameProgramming/

Mapping

e Why do we map?

e Spatial decomposition
e Representing the robot
e Current challenges

@ UNIVERSITY OF Manping
)

MARYL AND 47 ENAE 788X - Planetary Surface Robotics

Mapping

e Represent the environment around the robot
e Impacted by the robot position representation

e Relationships

— Map precision must match application

— Precision of features on map must match precision of
robot’s data (and hence sensor output)

— Map complexity directly atfects computational
complexity and reasoning about localization and
navigation

e Two basic approaches

— Continuous
— Decomposition (discretization)

)

) M ARYL AND 48 ENAE 788X - Planetary Surface Robotics

Environment Representation

e Continuous metric - X, y, theta

e Discrete metric - metric grid

» Discrete topological - topological grid
* Environmental modeling

— Raw sensor data - large volume, uses all acquired info

— Low level features (e.g., lines, etc.) - medium volume,
filters out usetul info, still some ambiguities

— High level features (e.g., doors, car) - low volume, few
ambiguities, not necessarily enough information

)

M ARYL AND 49 ENAE 788X - Planetary Surface Robotics

Continuous Representation

e Exact decomposition of environment

* Closed-world assumption

— Map models all objects

— Any area of map without objects has no objects in
corresponding environment

— Map storage proportional to density of objects in
environment

* Map abstraction and selective capture of features
to ease computational burden

)

M ARYL AND 50 ENAE 788X - Planetary Surface Robotics

Continuous Representation
e Match map type with sensing device

— e.g., for laser range finder, may represent map as a series
of infinite lines

— Fairly easy to fit laser range data to series of lines

=
[| .

(a) (b)
.)/ M ARYL AND 5| ENAE 788X - Planetary Surface Robotics

Continuous Representation

e In conjunction with position representation
— Single hypothesis: extremely high accuracy possible
— Multiple hypothesis: either

e Depict as geometric shape

* Depict as discrete set of possible positions
* Benefits of continuous representation
— High accuracy possible

e Drawbacks

— Can be computationally intensive

— Typically only 2D
/@ UNIVERSITY OF Mapping
N ,3/ M ARYL AND 5y ENAE 788X - Planetary Surface Robotics

Decomposition

e Capture only the useful features of the world

e Computationally better for reasoning, particularly
if the map is hierarchical

)

M ARYL AND 53 ENAE 788X - Planetary Surface Robotics

Exact Cell Decomposition
e Model empty areas with geometric shapes

e Can be extremely compact (18 nodes here)

e Assumption: robot position within each area of
free space does not matter

)

ENAE 788X - Planetary Surface Robotics
MARYLAND =

Fixed Cell Decomposition

e Tesselate world - discrete approximation
e Each cell is either empty or full

e Inexact (note loss of passageway on right)

e —

N ANEE

. | :' 'I: * goal |

)

M ARYL AND 55 ENAE 788X - Planetary Surface Robotics

Adaptive Cell Decomposition
e Multiple types of adaptation: quadtree, BSP, etc.

e Recursively decompose until a cell is completely
free or full

e Very space efficient compared to fixed cell

start
L]

e goal

)

M ARYL AND 56 ENAE 788X - Planetary Surface Robotics

Quadtree Example

Space Representation Equivalent quadtree

Russell Gayle, The University of North Carolina, Chapel Hill

Quadtree Example

Space Representation Equivalent quadtree

NW child SE
N Sw

? e

Quadtree Example

Space Representation Equivalent quadtree

Quadtree Example

Space Representation Equivalent quadtree

Each of these steps are examples of
pruned quadtrees, or the space at
different resolutions

Quadtree Example

Space Representation Equivalent quadtree

Kb

Quadtree Example

Space Representation Equivalent quadtree

Occupancy Grid

e Typically fixed decomposition

e Each cell is either filled or free (set threshold for
determining “filled”)

e Particularly useful with range sensors

— If sensor strikes something in cell, increment cell counter

— If sensor strikes something beyond cell, decrement cell
counter

— By discounting cell values with time, can deal with
moving obstacles

e Disadvantages
— Map size a function of sizes of environment and cell
— Imposes a priori geometric grid on world

)

M ARYL AND 63 ENAE 788X - Planetary Surface Robotics

Occupancy Grid

Darkness of cell proportional to counter value

@ UNIVERSITY OF Manping
)

M ARYL AND o4 ENAE 788X - Planetary Surface Robotics

Topological Decomposition

e Use environment features most useful to robots

e Generates a graph specifying nodes and
connectivity between them
— Nodes not of fixed size; do not specity free space

— Node is an area the robot can recognize its entry to and

exit from
/@ UNIVERSITY OF Mapping
N)/ M ARYL AND 65 ENAE 788X - Planetary Surface Robotics

Topological Example
For this example, the robot must be able to detect
intersections between halls, and between halls and

rooms
O
©)
Q
node 9
Connectivity
©
/@ UNIVERSITY OF Mapping
N)/ M ARYL AND ¢6 ENAE 788X - Planetary Surface Robotics

Topological Decomposition

e To robustly navigate with a topological map a
robot

— Must be able to localize relative to nodes

— Must be able to travel between nodes

e These constraints require the robot’s sensors to be
tuned to the particular topological decomposition

* Major advantage is ability to model non-geometric
features (like artificial landmarks) that benefit

localization
/@ UNIVERSITY OF Mapping
N ,3/ M ARYL AND 67 ENAE 788X - Planetary Surface Robotics

Map Updates: Occupancy Grids

* Occupancy grid
— Each cell indicated probability of free space/occupied

— Need method to update cell probabilities given sensor
readings at time t

e Update methods
— Sensor model
— Bayesian

— Dempster-Shafer

)

ENAE 788X - Planetary Surface Robotics
MARYLAND =

Representing the Robot

e How does the robot represent itself on the map?

e Point-robot assumption

— Represent the robot as a point

— Assume it is capable of omnidirectional motion
e Robot in reality is of nonzero size

— Dilation of obstacles by robot’s radius

— Resulting objects are approximations

— Leads to problems with obstacle avoidance

)

M ARYL AND 69 ENAE 788X - Planetary Surface Robotics

Current Challenges

e Real world is dynamic

e Perception is still very error-prone
— Hard to extract useful information

— Occlusion
e Traversal of open space
 How to build up topology
e This was all two-dimensional!

e Sensor fusion

)

M ARYL AND 20 ENAE 788X - Planetary Surface Robotics

Acknowledgements

e Thanks to Steven Roderick for originally
developing this lecture

o “Introduction to Autonomous Mobile Robots”
Siegwart and Nourbaksh

e “Mobile Robotics: A Practical Introduction”
Nehmzow

e “Computational Principles of Mobile Robotics”
Dudek and Jenkin

e “Introduction to Al Robotics” Murphy

)

ENAE 788X - Planetary Surface Robotics
MARYLAND =

