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Bug Algorithms and Path Planning

• Discussion of  term projects 
• A brief  overview of  path planning 
• Various “bug”-inspired (i.e., dumb) algorithms 
• Path planning and some smarter algorithms
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Term Design Projects

• Astronaut assistance rover 
• Sample collection rover 
• Minimum pressurized exploration rover 
• Others by special request 
• Details and top-level requirements are in slides for 

Lecture #01
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What Can You Do? Trade Studies on...

• Number, size, placement of  wheels 
• Steering system 
• Suspension system 
• Motors and gears (coming up) 
• Energetics (coming up) 
• Static and dynamic stability 
• Innovative solutions (legs? articulated 

suspensions?)
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Path Planning with Obstacles
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Path Planning with Bug Algorithms

• Loosely model path planning on insect capabilities 
• Assumption is that rover knows its position, goal 

position, and can sense (at least locally) obstacles 
• “Bug 0” algorithm: 

– Head towards goal 
– Follow obstacles until you can head to the goal again 
– Repeat until successful
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Basic Bug 0 Strategy
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An Obstacle that Confounds Bug 0
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Improve Algorithm by Adding Memory

• Add memory of  
past locations 

• When encountering 
an obstacle, 
circumnavigate and 
map it 

• Then head to goal 
from point of  
closest approach 

• “Bug 1” algorithm
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Implementation of  Bug 1
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Bug 1 Path Bounds
• D=straight-line 

distance from start to 
goal 

• Pi=perimeter of  ith 
obstacle 

• Lower Bound: 
shortest distance it 
could travel 

• Upper Bound: 
longest distance it 
might travel
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Bug 1 Upper and Lower Bounds
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• Lower Bound: 
!
!

• Upper Bound:

D
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Showing Bug 1 Completeness
• An algorithm is complete if, in finite time, it finds a path if  

such a path exists, or terminates with failure if  it does not 
• Suppose Bug 1 were incomplete 

– Therefore, there is a path from start to goal 
• By assumption, it is finite length, and intersects obstacles a finite number of  

times 
– Bug 1 does not find the patch 

• Either it terminates incorrectly, or spends infinite time looking 
• Suppose it never terminates 

– Each leave point is closer than the corresponding hit point 
– Each hit point is closer than the previous leave point 
– There are a finite number of  hit/leave pairs; after exhausting them, the robot will 

proceed to the goal and terminate 
• Suppose it terminates incorrectly - the closest point after a hit must be a leave 

– But the line must intersect objects an even number of  times 
– There must be another intersection on the path closer to the object, but we must 

have passed this on the body, which contradicts definition of  a leave point 

• Therefore Bug 1 is complete
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Bug 2 Algorithm
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• Create an m-line 
connecting the starting and 
goal points 

• Head toward goal on the 
m-line 

• Upon encountering 
obstacle, follow it until you 
re-encounter the m-line 

• Leave the obstacle and 
follow m-line toward goal
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But This Bug 2 Doesn’t Always Work

• In this case,  
re-encountering the  
m-line brings you back 
to the start 

• Implicitly assuming a 
static strategy for 
encountering the 
obstacle (“always turn 
left”)
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Bug 2 Algorithm

• Head toward the goal on 
the m-line 

• If  an obstacle is 
encountered, follow it 
until you encounter the 
m-line again closer to the 
goal 

• Leave the obstacle and 
continue on m-line 
toward the goal
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Comparison of  Bug 1 and Bug 2
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Bug 1 vs. Bug 2

• Bug 1 is an exhaustive search algorithm - it looks 
at all choices before commiting 

• Bug 2 is a greedy algorithm - it takes the first 
opportunity that looks better 

• In many cases, Bug 2 will outperform Bug 1, but 
• Bug 1 has a more predictable performance overall
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Bug 2 Upper and Lower Bounds
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• Lower Bound: 
!
!

• Upper Bound:

D

D +
X

i

ni
Pi
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More Realistic Bug Algorithm

• Knowledge of  
– Goal point location (global beacons) 
– Wall following (contact sensors) 

• Add a range sensor (with limited range and noise) 
• Focus on finding endpoints of  finite, continuous 

segments of  obstacles
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More Realistic Algorithm - Tangent Bug
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Implementation of  Tangent Bug
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Choose the target point O
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Encountering Extended Obstacles
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Path Planning

• How do we get to where we want to go? 
• Gridded workspaces 
• Formal search methods (e.g., Dijkstra) 
• Heuristic search methods (e.g., Best-First) 
• Hybrid search methods (A* and variants)
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Path Planning - Potentials and Pitfalls
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Avoid Entering Enclosed Spaces
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Convert (Planar) Space into Grid
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Dijkstra’s Algorithm

• Examine closest vertex not yet examined 
• Add new cell’s vertices to vertices not yet 

examined 
• Expand outward from starting point until you 

reach the goal cell 
• Guaranteed to find a shortest path (could be 

multiple equally short paths existing)... 
• ...as long as no path elements have negative cost
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Dijkstra’s Algorithm
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Greedy Best-First-Search Algorithm

• Assumes you have an estimate (“heuristic”) of  
how far any given element is from goal 

• Continue to scan closest adjacent vertices to find 
closest estimated distance from goal 

• Is not guaranteed to find a shortest path, but is 
faster than Dijkstra’s method
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Greedy Best-First-Search Algorithm
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Dijkstra’s Method with Concave Obstacle
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Best-First Search with Concave Obstacle
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Comments on Concave Obstacle

• Dijkstra’s method still produces shortest path, but 
a large area of  the grid has to be searched 

• Best-First method is quicker, but produces more 
inefficient path (“greedy” algorithm drives to goal 
even in presence of  surrounding obstacle) 

• Ideal approach would be to combine formal 
comprehensive (Dijkstra) and heuristic (Best-First) 
approaches 

• A* - uses heuristic approach to finding path to 
goal while guaranteeing that it’s a shortest path
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Unconstrained A* Path Solution
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A* Solution with Concave Obstacle
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Implementation of  A*

• g(n) is cost of  the path from the starting point to 
any examined point on map 

• h(n) is heuristic distance estimate from point on 
map to goal point 

• Each loop searches for vertex (n) that minimizes  
f(n)=g(n)+h(n)
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Effect of  Heuristic Accuracy
• If  h(n)=0, only g(n) is present and A* turns into 

Dijkstra’s method, which is guaranteed to find a 
minimum 

• If  h(n) is smaller than actual distance (“admissible”), 
still guaranteed to find minimum, but the smaller h(n) 
is, the larger the search space and slower the search 

• If  h(n) is exact, get an exact answer that goes directly 
to the goal 

• If  h(n) is greater than real distance, no longer 
guaranteed to produce shortest path, but it runs faster 

• If  g(n)=0, only dependent on h(n) and turns into 
Best-First heuristic algorithm
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Insights into A* Path Planning

• You don’t need a heuristic that’s exact - you just 
need something that’s close 

• Non-admissible heuristics (h(n)>exact value) don’t 
guarantee shortest path but do speed up solutions 

• “Cost” of  movement can be whatever metric 
you’re most concerned about - e.g., slope or soil 

• If  flat area has movement cost of  1 and slopes 
have movement cost of  3, search will propagate 
three times as fast in flat land as in hilly areas 

• g(n) and h(n) need to have the same units

38



Bug Algorithms and Path Planning 
ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y  O F
MARYLAND

Heuristic Estimation - Manhattan Distance
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Heuristic Estimation - Chebyshev Distance
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A* Variations

• Dynamic A* (“D*”) 
– A* works if  you have perfect knowledge 
– D* allows for correcting knowledge errors efficiently 

• Lifelong Planning A* (“LPA*”) 
– Useful when travel costs are changing 

• Both approaches allow reuse of  A* data, but 
require storage of  all A* parameters 
– Storage requirements become prohibitive when moving 

obstacles are present
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Grid Representations
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Polygonal Map Representations
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Full Path Specification
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Simplified Mesh Representation
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Mapping
• Why do we map?!
• Spatial decomposition!
• Representing the robot!
• Current challenges
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Mapping
• Represent the environment around the robot!
• Impacted by the robot position representation!
• Relationships!

– Map precision must match application!
– Precision of features on map must match precision of 

robot’s data (and hence sensor output)!
– Map complexity directly affects computational 

complexity and reasoning about localization and 
navigation!

• Two basic approaches!
– Continuous!
– Decomposition (discretization)
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Environment Representation
• Continuous metric - x, y, theta!
• Discrete metric - metric grid!
• Discrete topological - topological grid!
• Environmental modeling!

– Raw sensor data - large volume, uses all acquired info!
– Low level features (e.g., lines, etc.) - medium volume, 

filters out useful info, still some ambiguities!
– High level features (e.g., doors, car) - low volume, few 

ambiguities, not necessarily enough information
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Continuous Representation
• Exact decomposition of environment!
• Closed-world assumption!

– Map models all objects!
– Any area of map without objects has no objects in 

corresponding environment!
– Map storage proportional to density of objects in 

environment!

• Map abstraction and selective capture of features 
to ease computational burden
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Continuous Representation
• Match map type with sensing device!

– e.g., for laser range finder, may represent map as a series 
of infinite lines!

– Fairly easy to fit laser range data to series of lines
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Continuous Representation
• In conjunction with position representation!

– Single hypothesis: extremely high accuracy possible!
– Multiple hypothesis: either!

• Depict as geometric shape!
• Depict as discrete set of possible positions!

• Benefits of continuous representation!
– High accuracy possible!

• Drawbacks!
– Can be computationally intensive!
– Typically only 2D
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Decomposition
• Capture only the useful features of the world!
• Computationally better for reasoning, particularly 

if the map is hierarchical
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Exact Cell Decomposition
• Model empty areas with geometric shapes!
• Can be extremely compact (18 nodes here)!
• Assumption: robot position within each area of 

free space does not matter
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Fixed Cell Decomposition
• Tesselate world - discrete approximation!
• Each cell is either empty or full!
• Inexact (note loss of passageway on right)
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Adaptive Cell Decomposition
• Multiple types of adaptation: quadtree, BSP, etc.!
• Recursively decompose until a cell is completely 

free or full!
• Very space efficient compared to fixed cell
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Types of Adaptation
• BSP (only horizontal/vertical lines)
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Occupancy Grid
• Typically fixed decomposition!
• Each cell is either filled or free (set threshold for 

determining “filled”)!
• Particularly useful with range sensors!

– If sensor strikes something in cell, increment cell counter!
– If sensor strikes something beyond cell, decrement cell 

counter!
– By discounting cell values with time, can deal with 

moving obstacles!
• Disadvantages!

– Map size a function of sizes of environment and cell!
– Imposes a priori geometric grid on world
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Occupancy Grid
Darkness of cell proportional to counter value
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Topological Decomposition
• Use environment features most useful to robots!
• Generates a graph specifying nodes and 

connectivity between them !
– Nodes not of fixed size; do not specify free space!
– Node is an area the robot can recognize its entry to and 

exit from
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Topological Example
For this example, the robot must be able to detect 
intersections between halls, and between halls and 
rooms
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Topological Decomposition
• To robustly navigate with a topological map a 

robot!
– Must be able to localize relative to nodes!
– Must be able to travel between nodes!

• These constraints require the robot’s sensors to be 
tuned to the particular topological decomposition!

• Major advantage is ability to model non-geometric 
features (like artificial landmarks) that benefit 
localization
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Map Updates: Occupancy Grids
• Occupancy grid!

– Each cell indicated probability of free space/occupied!
– Need method to update cell probabilities given sensor 

readings at time t!

• Update methods!
– Sensor model!
– Bayesian!
– Dempster-Shafer
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Representing the Robot
• How does the robot represent itself on the map?!
• Point-robot assumption!

– Represent the robot as a point!
– Assume it is capable of omnidirectional motion!

• Robot in reality is of nonzero size!
– Dilation of obstacles by robot’s radius!
– Resulting objects are approximations!
– Leads to problems with obstacle avoidance
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Current Challenges
• Real world is dynamic!
• Perception is still very error-prone!

– Hard to extract useful information!
– Occlusion!

• Traversal of open space!
• How to build up topology!
• This was all two-dimensional!!
• Sensor fusion
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