Robotic Sensors

* Discussion of Term Projects

e Sensors
— Proprioceptive
— Exteroceptive

— Interoceptive
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Term Design Projects

e Astronaut assistance rover
* Sample collection rover

* Minimum pressurized exploration rover

* Others by special request
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AAR Design Project Statement

* Perform a detailed design of a small astronaut
assistance rover, emphasizing mobility systems

— Chassis systems (e.g., wheels, steering, suspension...)
— Navigation and guidance system (e.g., sensors,
algorithms...)
* Design for Moon, then assess feasibility of
systems for Mars, and conversion to FEarth
analogue rover

* 'This is not a hardware project - focus is on detailed
design (but may be built later!)
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Level 1 Requirements (Performance)

1. Rover shall have a maximum operating speed of
at least 15 km/hour on level, flat terrain

2. Rover shall be designed to accommodate a 0.3
meter obstacle at minimal velocity

3. Rover shall be designed to accommodate a 0.1 m
obstacle at a velocity of 7.5 km/hour

4. Rover shall be designed to accommodate a 30°
slope in any direction at a speed of at least 5 km/
hour with positive static and dynamic margins
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Level 1 Requirements (Payload)

5. Rover shall be be designed for an instrument
payload with a mass ot 50 kg and volume ot 0.25
m?3

6. Rover shall also accommodate a Ranger-classs
sample-collection manipulator system with a mass

of 50kg

7. Rover shall be designed to nominally transport a
95t percentile American male crew in full
pressure suit

8. Rover shall be capable of carrying two 95t

percentile crew 1n a contingency
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RoboOps Design Project Statement

* Design a small remotely operated rover to
participate in the 2015 RoboOps competition

* Rover must be capable of rapid and highly robust
maneuverability in all terrains at the JSC Rockyard

* Design will be implemented by a group of
undergrads in the spring (although you can help,

too, it you want!)
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RHEA — RoboOps 2012

Robotic Sensors
ENAE 788X - Planetary Surface Robotics




RoboOps Requirements

* Rovers must fit within a 1x1x0.5 meter volume to
start and deploy to operational configuration

* Rover must be <45 kg; tactical advantages go to
lighter rovers

* Rovers must operate without local interaction for
one hour

e Rovers must be controlled via cell networks from
participating university’s campus

* Rovers collect colored rocks to score points
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RoboOps Mobility Requirements

* Vehicle payload (exclusive of mobility system) will
be 10 kg

* Vehicle shall be capable of at least 1 m/sec travel
up 20° slope

* Vehicle shall have positive static (stationary)
stability margins on 40° slope in any orientation

* Vehicle shall be capable of traversing 20cm
obstacles

* Vehicle shall be capable of robust operation in
loose sand, small gravel, and packed earth
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LWPR Design Project Statement

* Design a mobility chassis for a minimum
pressurized rover for lunar exploration

* Design for the moon, and do design modifications
for implementation on Earth

* Goal is to keep complete rover below 2000 kg
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NASA Space Exploration Vehicle
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TURTLE Interior
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LWPR Requirements

* Pressurized cabin (payload) is 2m in diameter x 2.5
m long, mass of 1200 kg

* Vehicle shall be designed for moon and assessed
for operations on Mars and Earth

* Vehicle shall have positive static (stationary)
margins at 35° slopes in any orientation

* Vehicle shall be capable of unrestricted operations
on 20° slope

* Vehicle shall have a minimum max speed of 15
km/hr on flat terrain
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LWPR Requirements

* Vehicle shall be capable of traversing a 50cm
obstacle

* Vehicle shall be capable of operating reliably on

loose sand
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Suggested Content for all Term Projects

Terramechanics analysis

Wheel configuration (number, shape) trade studies
Steering approach and analysis

Static stability

Suspension dynamics

Actuator specification (torque, speed)

Calculation of power requirements

Overall configuration graphics

Opportunities for individual initiatives
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Fundamental Elements of Robotics

Environment
Planning
Sensing —> and —> Actuation
Reasoning
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Sensor Components

* An overview of robotic operations
e (Generic discussion of sensor 1ssues

* Sensor types

— Proprioceptive (measures robotic interaction with
environment)

— Exteroceptive (measures environment directly, usually
remotely)

— Interoceptive (internal data - engineering quantities)
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Sensing Definitions

e Resolution

* Accuracy

e Precision

* Repeatability

Probability

density

UNTV_E R SEETSY OF

MARYLAND

20

A

Reference value

<

Accuracy

P>

<

>

» Value

Precision

Robotic Sensors

ENAE 788X - Planetary Surface Robotics



Some Notes on Data and Noise

* Noise is inherent in all data
— Sampling errors
— Sensor error

— Interference and cross-talk
* For zero-mean noise,
— Integration reduces noise
— Differentiation increases noise
* Use the appropriate sensor for the measurement

— Don’t try to differentiate position for velocity, velocity
for acceleration
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Shannon Sampling Limit

* For discrete measurements, can’t reconstruct
frequency greater than 1/2 the sampling rate

* Discretization error creates aliasing errors
(frequencies that aren’t really there)
— Signal frequency fsignal
— Sampling frequency fsample
— Alias frequencies fsample = fsignal
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Analog and Digital Data
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Analog and Digital Data with Noise
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Some Notes on Analog Sensors

* Analog sensors encode information in voltage (or
sometimes current)

* Intrinsically can have infinite precision on signal
measurement

* Practically limited by noise on line, precision of
analog/digital encoder

* Differentiation between high level (signal
variance~volts) and low level (signal
variance~millivolts) sensors

Advice: never do analog what you can do digitally

°
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Proprioceptive Sensors

* Measure internal state of system in the
environment

* Rotary position
* Linear position
* Velocity

e Accelerations

* Temperature
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Proprioceptive Sensors

* Position and velocity (encoders, etc.)
* Location (GPYS)
* Attitude

— Inertial measurement units (IMU)
— Accelerometers

— Horizon sensors

e Force sensors
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Representative Sensors
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Absolute Encoders

* Measure absolute rotational position of shaft

* Should produce unambiguous position even
immediately following power-up

* Rovers typically require continuous rotation
SENSors

* General rule of thumb: never do in analog what

you can do digitally (due to noise, RF interference,
cross-talk, etc.)
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Potentiometers

wiper turns with dial

resistive material
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Potentiometers
* Advantages
— Very simple (three wires)
— Unambiguous absolute position readout
— Generally easy to integrate

— l.ow cost

* Disadvantages
— Analog signal
— Data gap at transition every revolution
— Accuracy limited to precision of resistive element
— Wear on rotating contactor

— Liable to contamination damage
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Resolvers
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Resolvers
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Resolvers

* Advantages
— Non-contact (inductively coupled)
— Unambiguous absolute position reading

— Similar technology to synchros

* Disadvantages
— AC signal
— Analog
— Requires dedicated decoding circuitry

— Expenstve
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Rotary Binary Encoder
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Binary Absolute Position Encoders
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Gray Code Absolute Position Encoders
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Absolute Encoder Gray Codes
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Optical Absolute Encoders

* Advantages
— No contact (low/no friction)

— Absolute angular position to limits of resolution

* 8 bit = 256 positions/rev = 1.4° resolution
* 16 bit = 65,536 positions = 0.0055° resolution

* Require decoding (look-up table) of Gray codes

* Number of wires ~ number of bits plus two
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Magnetic Absolute Encoders

* Advantages
— No contact (low/no friction)

— Absolute angular position to limits of resolution

* 8 bit = 256 positions/rev = 1.4° resolution
* 16 bit = 65,536 positions = 0.0055° resolution

— Robust to launch loads
* Require decoding (frequently on chip)

* Choice of output reading formats (analog, serial,

parallel)
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Incremental Encoders

* Measure change in position, not position directly
* Have to be integrated to produce position

* Require absolute reference (index pulse) to
calibrate

e Can be used to calculate velocities

* Generally optical or magnetic (no contact)
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Incremental Encoder Principles
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Quadrature Incremental Encoder
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Incremental Encoder Interpretation

* Position
— Count up/down based on quadrature (finite state
machine)

— Resolution based on location, gearing, speed

* 256 pulse encoder (1024 with quadrature)
* Output side — 0.35 deg
* Input side 160:1 gearing — 0.0022 deg = 7.9 arcsec

* Velocity

— Pulses/time period
* High precision for large number of pulses (high speed)
* 90 deg/sec, input side — 41 pulses/msec (2.5% error)
— Time/counts
* High precision for long time between pulses (low speed)
* 1 deg/sec, output side — 350 msec/pulse
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Quadrature Direction Sensing

Forward (CW)
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Velocity Measurement

e Number of bits/unit time
— High precision for rapid rotation
— Low resolution at slow rotation

— For n bit encoder reading k bits/interval

i 27 <rad

~ om Atcorx  sec

e Amount of time between encoder bits
— High precision for rapid rotation

— Low resolution for slow rotation

1 2T rad

.- 2= Atpulses S€C
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Linear Variable Displacement Transformer
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Exteroceptive Sensors

* Measure parameters external to system
* Pressure

* Forces and torques

* Vision

* Proximity

e Active ranging

— Radar

— Sonar

— Lidar
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. ,,/ M ARYL AND ENAE 788X - Planetary Surface Robotics

48



Exteroceptive Sensors

* Vision sensors
— Monocular
— Stereo/multiple cameras
— Structured lighting
* Ranging systems
— Laser line scanners
— LIDAR
— Flash LIDAR
— RADAR
— SONAR
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Switches

* Used to indicate immediate proximity, contact
— End of travel/hard stops

— Contact with environment

* Technologies
— Mechanical switches
— Reed (magnetic) switches

— Hall effect sensors
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Proximity Sensors

* Technologies

— Magnetic sensofrs

— Phototransistor/LED

— Capacitlector

— Whiskers
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Capaciflector
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Sonar Rangefinder Systems

e e o prary ~ My Shrpeereor ™ A0 U
Note: The displayed beam width of (D) is a ; { .20 ft.
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sensor beam width. -15 ft.

':fgv ' Lf %.10“_
a

beam characteristics are approximate

UNIVERSITY OF Robotic Sensors

| : ,// M ARYL AND ENAE 788X - Planetary Surface Robotics

55



Computer Vision Cameras
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Scanning Laser Rangefinder
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Line Scanner Area Map
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Scanning Laser Rangerfinder FOV
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LIDAR Types
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SpaceX DragonEye Flash LIDAR
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Flash LiDAR
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Interoceptive Sensors

* Electrical (voltage, current)
* Temperature
* Battery charge state

e Stress/strain (strain gauges)

e Sound
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Sensor Guidelines for Flight Systems

* Instrument every flight-critical activity

* Provide sufficient sensor redundancy to
differentiate between sensor failure and system
failure

— Redundant sensors

- Reinforcing SENsors

* Interrogate sensors well beyond Shannon’s limit
(cannot reconstruct data without at least two

samples/cycle)
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