Robotic Sensors

- Discussion of Term Projects
- Sensors
 - Proprioceptive
 - Exteroceptive
 - Interoceptive

NIVERSITY OF

© 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Term Design Projects

- Astronaut assistance rover
- Sample collection rover
- Minimum pressurized exploration rover

2

• Others by special request

AAR Design Project Statement

- Perform a detailed design of a small astronaut assistance rover, emphasizing mobility systems
 - Chassis systems (e.g., wheels, steering, suspension ...)
 - Navigation and guidance system (e.g., sensors, algorithms...)
- Design for Moon, then assess feasibility of systems for Mars, and conversion to Earth analogue rover

3

• This is not a hardware project - focus is on detailed design (but may be built later!)

RAVEN in Telerobotic Sample Config

RAVEN in EVA Transport Config

Level 1 Requirements (Performance)

- 1. Rover shall have a maximum operating speed of at least 15 km/hour on level, flat terrain
- 2. Rover shall be designed to accommodate a 0.3 meter obstacle at minimal velocity
- 3. Rover shall be designed to accommodate a 0.1 m obstacle at a velocity of 7.5 km/hour
- Rover shall be designed to accommodate a 30° slope in any direction at a speed of at least 5 km/ hour with positive static and dynamic margins

6

Level 1 Requirements (Payload)

- Rover shall be be designed for an instrument payload with a mass of 50 kg and volume of 0.25 m³
- Rover shall also accommodate a Ranger-classs sample-collection manipulator system with a mass of 50kg
- Rover shall be designed to nominally transport a 95th percentile American male crew in full pressure suit
- 8. Rover shall be capable of carrying two 95th percentile crew in a contingency
 INIVERSITY OF

RoboOps Design Project Statement

- Design a small remotely operated rover to participate in the 2015 RoboOps competition
- Rover must be capable of rapid and highly robust maneuverability in all terrains at the JSC Rockyard
- Design will be implemented by a group of undergrads in the spring (although you can help, too, if you want!)

8

RHEA – RoboOps 2012

g

RoboOps Requirements

- Rovers must fit within a 1x1x0.5 meter volume to start and deploy to operational configuration
- Rover must be <45 kg; tactical advantages go to lighter rovers
- Rovers must operate without local interaction for one hour
- Rovers must be controlled via cell networks from participating university's campus
- Rovers collect colored rocks to score points

10

RoboOps Mobility Requirements

- Vehicle payload (exclusive of mobility system) will be 10 kg
- Vehicle shall be capable of at least 1 m/sec travel up 20° slope
- Vehicle shall have positive static (stationary) stability margins on 40° slope in any orientation
- Vehicle shall be capable of traversing 20cm obstacles

H

• Vehicle shall be capable of robust operation in loose sand, small gravel, and packed earth

UNIVERSITY OF MARYLAND

LWPR Design Project Statement

• Design a mobility chassis for a minimum pressurized rover for lunar exploration

12

- Design for the moon, and do design modifications for implementation on Earth
- Goal is to keep complete rover below 2000 kg

NASA Space Exploration Vehicle

13

TURTLE Interior

14

LWPR Requirements

- Pressurized cabin (payload) is 2m in diameter x 2.5 m long, mass of 1200 kg
- Vehicle shall be designed for moon and assessed for operations on Mars and Earth
- Vehicle shall have positive static (stationary) margins at 35° slopes in any orientation
- Vehicle shall be capable of unrestricted operations on 20° slope
- Vehicle shall have a minimum max speed of 15 km/hr on flat terrain

15

LWPR Requirements

• Vehicle shall be capable of traversing a 50cm obstacle

16

• Vehicle shall be capable of operating reliably on loose sand

Suggested Content for all Term Projects

- Terramechanics analysis
- Wheel configuration (number, shape) trade studies
- Steering approach and analysis
- Static stability
- Suspension dynamics
- Actuator specification (torque, speed)
- Calculation of power requirements
- Overall configuration graphics
- Opportunities for individual initiatives

17

Fundamental Elements of Robotics

18

Sensor Components

- An overview of robotic operations
- Generic discussion of sensor issues

19

- Sensor types
 - Proprioceptive (measures robotic interaction with environment)
 - Exteroceptive (measures environment directly, usually remotely)
 - Interoceptive (internal data engineering quantities)

Sensing Definitions

- Resolution
- Accuracy
- Precision
- Repeatability

Probability density **Reference** value

Accuracy

Precision Value

Some Notes on Data and Noise

- Noise is inherent in all data
 - Sampling errors
 - Sensor error
 - Interference and cross-talk
- For zero-mean noise,
 - Integration reduces noise
 - Differentiation increases noise

21

Use the appropriate sensor for the measurement
 Don't try to differentiate position for velocity, velocity for acceleration

Shannon Sampling Limit

- For discrete measurements, can't reconstruct frequency greater than 1/2 the sampling rate
- Discretization error creates aliasing errors (frequencies that aren't really there)
 - Signal frequency f_{signal}
 - Sampling frequency f_{sample}
 - Alias frequencies $f_{\text{sample}} \pm f_{\text{signal}}$

22

Analog and Digital Data

	1 = /							
	0.9							
	0.8							
	0.7							
	0.6							
	0.5							
	0.4							
	0.3							
	0.2							
	0.1							
	0							
	0	20	40	60 Analog - Digit	80 al	100	120	
			,		aı			
		RSITYO	F				Roboti	c Sensors
V.	IAR	YLANL) 22	ENA	AE 788X -	Planetary	Surface	Robotics

23

Analog and Digital Data with Noise

1.2	- '						
1	1						
0.8							
0.6							
0.4							
0.2							
0	16						
	0	20	40	60	80	100	120
-0.2							
			- Analog	- Digital			
IV	ERSIT	YOF				Ro	obotic
A	RYLA	ND		ENAE	788X - Pla	anetary Sur	face

24

Some Notes on Analog Sensors

- Analog sensors encode information in voltage (or sometimes current)
- Intrinsically can have infinite precision on signal measurement
- Practically limited by noise on line, precision of analog/digital encoder
- Differentiation between high level (signal variance~volts) and low level (signal variance~millivolts) sensors

25

• Advice: never do analog what you can do digitally

UNIVERSITY OF MARYLAND

Proprioceptive Sensors

• Measure internal state of system in the environment

26

- Rotary position
- Linear position
- Velocity
- Accelerations
- Temperature

Proprioceptive Sensors

- Position and velocity (encoders, etc.)
- Location (GPS)
- Attitude
 - Inertial measurement units (IMU)

27

- Accelerometers
- Horizon sensors
- Force sensors

Representative Sensors

UNIVERSITY OF MARYLAND 28

Absolute Encoders

- Measure absolute rotational position of shaft
- Should produce unambiguous position even immediately following power-up
- Rovers typically require continuous rotation sensors

29

• General rule of thumb: never do in analog what you can do digitally (due to noise, RF interference, cross-talk, etc.)

Potentiometers

Potentiometers

- Advantages
 - Very simple (three wires)
 - Unambiguous absolute position readout
 - Generally easy to integrate
 - Low cost
- Disadvantages
 - Analog signal
 - Data gap at transition every revolution
 - Accuracy limited to precision of resistive element
 - Wear on rotating contactor

- Liable to contamination damage UNIVERSITY OF MARYLAND 31 ENAE

Resolvers

33

UNIVERSITY OF MARYLAND

Resolvers

- Advantages
 - Non-contact (inductively coupled)
 - Unambiguous absolute position reading
 - Similar technology to synchros
- Disadvantages
 - AC signal
 - Analog
 - Requires dedicated decoding circuitry

34

– Expensive

Rotary Binary Encoder

YLAND

35

ENAE 788X - Planetary Surface Robotics

Binary Absolute Position Encoders

36

ENAE 788X - Planetary Surface Robotics

Gray Code Absolute Position Encoders

UNIVERSITY OF MARYLAND 37

Absolute Encoder Gray Codes

Optical Absolute Encoders

- Advantages
 - No contact (low/no friction)
 - Absolute angular position to limits of resolution
 - 8 bit = 256 positions/rev = 1.4° resolution
 - 16 bit = 65,536 positions = 0.0055° resolution
- Require decoding (look-up table) of Gray codes
- Number of wires ~ number of bits plus two

39

Magnetic Absolute Encoders

- Advantages
 - No contact (low/no friction)
 - Absolute angular position to limits of resolution
 - 8 bit = 256 positions/rev = 1.4° resolution
 - 16 bit = 65,536 positions = 0.0055° resolution
 - Robust to launch loads
- Require decoding (frequently on chip)

40

• Choice of output reading formats (analog, serial, parallel)

Incremental Encoders

- Measure change in position, not position directly
- Have to be integrated to produce position
- Require absolute reference (index pulse) to calibrate
- Can be used to calculate velocities
- Generally optical or magnetic (no contact)

41

Incremental Encoder Principles

42

UNIVERSITY OF

ARYLAND

Quadrature Incremental Encoder

Robotic Sensors ENAE 788X - Planetary Surface Robotics

ILAND

Incremental Encoder Interpretation

- Position
 - Count up/down based on quadrature (finite state machine)
 - Resolution based on location, gearing, speed
 - 256 pulse encoder (1024 with quadrature)
 - Output side 0.35 deg
 - Input side 160:1 gearing 0.0022 deg = 7.9 arcsec
- Velocity
 - Pulses/time period
 - High precision for large number of pulses (high speed)
 - 90 deg/sec, input side 41 pulses/msec (2.5% error)
 - Time/counts

NIVERSITY OF

- High precision for long time between pulses (low speed)
- 1 deg/sec, output side 350 msec/pulse

44

Quadrature Direction Sensing

45

Velocity Measurement

- Number of bits/unit time
 - High precision for rapid rotation
 - Low resolution at slow rotation
 - For n bit encoder reading k bits/interval

$$\omega = \frac{k}{2^n} \frac{2\pi}{\Delta t_{CLK}} \left\langle \frac{rad}{sec} \right\rangle$$

• Amount of time between encoder bits

46

- High precision for rapid rotation
- Low resolution for slow rotation $\omega = \frac{1}{2^n} \frac{2\pi}{\Delta t_{pulses}} \langle$

Robotic Sensors ENAE 788X - Planetary Surface Robotics

rad

Linear Variable Displacement Transformer

47

Exteroceptive Sensors

• Measure parameters external to system

48

- Pressure
- Forces and torques
- Vision
- Proximity
- Active ranging
 - Radar
 - Sonar
 - Lidar

Exteroceptive Sensors

- Vision sensors
 - Monocular
 - Stereo/multiple cameras

49

- Structured lighting
- Ranging systems
 - Laser line scanners
 - LIDAR
 - Flash LIDAR
 - RADAR
 - SONAR

Switches

- Used to indicate immediate proximity, contact
 - End of travel/hard stops
 - Contact with environment
- Technologies
 - Mechanical switches
 - Reed (magnetic) switches

50

- Hall effect sensors

Proximity Sensors

- Technologies
 - Magnetic sensors
 - Phototransistor/LED

51

- Capaciflector
- Whiskers

Capaciflector

52

Sonar Rangefinder Systems

53

Computer Vision Cameras

54

Scanning Laser Rangefinder

55

Detection Area: 240° Max. Distance: 4000mm

Figure 1 shows the detectable area for white Kent sheet (S0mm×S0mm). Detection distance may va with size and object.

Line Scanner Area Map

Robotic Sensors ENAE 788X - Planetary Surface Robotics

56

Scanning Laser Rangerfinder FOV

57

LIDAR Types

58

ENAE 788X - Planetary Surface Robotics

SpaceX DragonEye Flash LIDAR

59

WIVERSITY OF MARYLAND

Flash LiDAR

60

Interoceptive Sensors

- Electrical (voltage, current)
- Temperature
- Battery charge state
- Stress/strain (strain gauges)

61

• Sound

Sensor Guidelines for Flight Systems

• Instrument every flight-critical activity

62

- Provide sufficient sensor redundancy to differentiate between sensor failure and system failure
 - Redundant sensors
 - Reinforcing sensors
- Interrogate sensors well beyond Shannon's limit (cannot reconstruct data without at least two samples/cycle)

