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§ SLAM stands for simultaneous localization and 
mapping 

§ The task of building a map while estimating  
the pose of the robot relative to this map 
!

§ Why is SLAM hard? 
Chicken and egg problem:  
a map is needed to localize the robot and  
a pose estimate is needed to build a map

The SLAM Problem



Why is SLAM a hard problem?

SLAM: robot path and map are both unknown! 
Robot path error correlates errors in the map



Why is SLAM a hard problem?

• In the real world, the mapping between observations 
and landmarks is unknown 

• Picking wrong data associations can have 
catastrophic consequences 

• Pose error correlates data associations

Robot pose 
uncertainty



Data Association Problem

• A data association is an assignment of 
observations to landmarks 

• In general there are more than [n choose m]  
(n observations, m landmarks) possible 
associations 

• Also called “assignment problem”



Representations

• Grid maps or scans 
!
!

  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;

…] 

!
• Landmark-based

!
[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…



SLAM Applications

Indoors

Space

Undersea

Underground
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Sensors for Mobile Robots

• Contact sensors: Bumpers 
• Internal sensors 

– Accelerometers (spring-mounted masses) 
– Gyroscopes (spinning mass, laser light) 
– Compasses, inclinometers (earth’s magnetic field, gravity) 

• Proximity sensors 
– Sonar (time of flight) 
– Radar (phase and frequency) 
– Laser range-finders (triangulation, time of flight, phase) 
– Infrared (intensity) 

• Visual sensors: Cameras 
• Satellite-based sensors: GPS



Proximity Sensors

•The central task is to determine P(z|x), i.e., the probability 
of a measurement z given that the robot is at position x.



Typical Range Measurement Errors

• Beams reflected 
by obstacles 

• Beams reflected 
by persons / 
caused by 
crosstalk 

• Random 
measurements 

• Maximum range 
measurements



Proximity Measurement

• Measurement can be caused by … 
– a known obstacle. 
– cross-talk. 
– an unexpected obstacle (people, furniture, …). 
– missing all obstacles (total reflection, glass, …). 

• Noise is due to uncertainty … 
– in measuring distance to known obstacle. 
– in position of known obstacles. 
– in position of additional obstacles. 
– whether obstacle is missed.



Additional Models of Proximity 
Sensors

• Map matching (sonar,laser): generate small, 
local maps from sensor data and match local 
maps against global model. 
!

• Scan matching (laser): map is represented by 
scan endpoints, match scan into this map. 
!

• Features (sonar, laser, vision): Extract features 
such as doors, hallways from sensor data.



Important points about Sensor 
Models in Localization

• Explicitly modeling uncertainty in sensing is key to 
robustness. 

• In many cases, good models can be found by the 
following approach: 

– Determine parametric model of noise free measurement. 
– Analyze sources of noise. 
– Add adequate noise to parameters (eventually mix in densities 

for noise). 
– Learn (and verify) parameters by fitting model to data. 
– Likelihood of measurement is given by “probabilistically 

comparing” the actual with the expected measurement. 
• This holds for motion models as well. 
• It is extremely important to be aware of the underlying 

assumptions!



Localization

“Using sensory information to locate the robot in its 
environment is the most fundamental problem to 
providing a mobile robot with autonomous 
capabilities.”                 [Cox ’91]

Given  
 - Map of the environment. 
 - Sequence of sensor measurements. 

Wanted 
 - Estimate of the robot’s position. 

Problem classes 
 - Position tracking 
 - Global localization 
 - Kidnapped robot problem (recovery)



Localization using Kinematics

● Issue: We can’t (necessarily) tell direction from encoders 
alone 
● Solution:  Keep track of forward/backward motor 
command sent to each wheel  
● Localization program:  Build new arrays into behavior/
priority-based controller and use to continually update 
location 
● Doesn’t solve noise problems, though



Localization Using Landmarks

• Active beacons (e.g., radio, GPS) 
• Passive (e.g., visual, retro-reflective) 
• Standard approach is triangulation 
!

• Sensor provides 
– distance, or 
– bearing, or 
– distance and bearing.



Correcting Localization with 
Landmarks

• Keep track of (x,y,theta) 
between landmarks 

• Correct for absolute y (known) 
when ground sensor triggers 
landmark 

• Issues:  
–  Uncertainty in x and theta not 

corrected using this method 
– Possible to confuse landmarks



Particle Filters
§ Represent belief by random samples 
§ Estimation of non-Gaussian, nonlinear processes 
§ Sampling Importance Resampling (SIR) principle 

§ Draw the new generation of particles 
§ Assign an importance weight to each particle 
§ Resampling  

§ Typical application scenarios are  
tracking, localization, …



Motion Model  Reminder

Start
Start



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Importance Sampling with 
Resampling



Monte Carlo Localization: Initial 
Distribution



Monte Carlo Localization: After 
Incorporating 65 Ultrasound Scans



SLAM Lecture Outline

• SLAM 
• Robot Sensing and Localization 
• Robot Mapping 
• Robot Motion Models



Why Mapping?

• Learning maps is one of the 
fundamental problems in mobile 
robotics 

• Maps allow robots to efficiently carry 
out their tasks, allow localization … 

• Successful robot systems rely on 
maps for localization, path planning, 
activity planning etc.



The General Problem of 
Mapping

What does the environment look like? 

Formally, mapping involves, given the 
sensor data, to calculate the most 
likely map



Mapping as a Chicken and Egg 
Problem

• So far we learned how to estimate the pose of 
the vehicle given the data and the map 
(localization). 

• Mapping, however, involves to simultaneously 
estimate the pose of the vehicle and the map. 

• The general problem is therefore denoted as 
the simultaneous localization and mapping 
problem (SLAM). 

• Throughout this section we will describe how 
to calculate a map given we know the pose of 
the vehicle



Problems in Mapping
!

• Sensor interpretation 
– How do we extract relevant information from raw sensor 

data? 
– How do we represent and integrate this information over 

time? 
!

• Robot locations have to be estimated 
– How can we identify that we are at a previously visited 

place? 
– This problem is the so-called data association problem.



Occupancy Grid Maps  

            

                                                
                                                
                   

• Introduced by Moravec and Elfes in 1985 
• Represent environment by a grid. 
• Estimate the probability that a location is occupied by an 

obstacle. 
• Key assumptions 

– Occupancy of individual cells (m[xy]) is independent 
!
!
!
!

– Robot positions are known!



Example Sonar Sweep

!
• Distance 

measurements from 
circular sonar scan 

• What is robot 
seeing?



Detecting a Wall



Partitioning Space into Regions

Process sweeps to 
partition space into 
free space (white), 
and walls and obstacles 
(black and grey)



Grid-based Algorithm

• Superimpose “grid” on 
    robot field of view 
• Indicate some measure 
   of “obstacleness” in 
   each grid cell based 
   on sonar readings



So how do we use sonar to 
create maps?

What should we conclude if this sonar reads 10 feet? 

there isn’t 
something here 

there is 
something 
somewhere 
around here 

Local Map
unoccupied
No information
occupied

(Courtesy of Dodds)

10 feet



Sonar Modeling

response model  (Kuc)

sonar 
reading

obstacle

c  = speed of sound	

a  = diameter of sonar element	

t   = time	

z   = orthogonal distance	

α  = angle of environment surface

• Models the response, hR,with

α

• Then, add noise to the model to 
	
 obtain a probability:

p( S | o )
chance that the sonar reading is S, 
given an obstacle at location o

z =

S

o

(Courtesy of Dodds)



Typical Sonar Probability Model

(From Borenstein et. Al.)



Building a Map
• The key to making accurate  
 maps is combining lots of data. 
• But combining these numbers 
 means we have to know what 
 they are ! 
• What should our map contain ? 

– small cells 
– each represents a bit of the robot’s 
 environment 
– larger values => obstacle 
– smaller values => free 
!

– Courtesy of Dodds



Alternative: Simple Counting

• For every cell count 
– hits(x,y): number of cases where a beam 

ended at <x,y> 
– misses(x,y): number of cases where a beam 

passed through <x,y> 
!
!
!

 



Difference between Occupancy 
Grid Maps and Counting

• The counting model determines how often a cell 
reflects a beam. 

• The occupancy model represents whether or not 
a cell is occupied by an object. 

• Although a cell might be occupied by an object, 
the reflection probability of this object might be 
very small (windows etc.).



Example Occupancy Map



Properties of Mapping Methods
• Occupancy grid maps are a popular approach to represent the 

environment of a mobile robot given known poses. 
• In this approach each cell is considered independently from all 

others. 
• It stores the posterior probability that the corresponding area in 

the environment is occupied. 
• Occupancy grid maps can be learned efficiently using a 

probabilistic approach. 
• Reflection maps are an alternative representation. 
• They store in each cell the probability that a beam is reflected 

by this cell. 



Using sonar to create maps

What should we conclude if this sonar reads 10 feet... 

10 feet

and how do we add the information that the next 
sonar reading (as the robot moves) reads 10 feet, too?

10 feet

(Courtesy of Dodds)



What is it a map of?

Several answers to this question have been tried:
It’s a map of occupied cells. oxy  oxy  

cell (x,y) is 
occupied

cell (x,y) is 
unoccupied

Each cell is either occupied or unoccupied -- 
this was the approach taken by the Stanford 
Cart.

pre  ‘83

What information should this map contain, 
given that it is created with sonar ?(Courtesy of Dodds)



An example map

units: feet Evidence grid of a tree-lined outdoor path

lighter areas:   lower odds of obstacles being present

darker areas:   higher odds of obstacles being present

how to combine them?(Courtesy of Dodds)



Conditional probability

Some intuition...

p( o | S )  =    

The probability of event o, given event S .

The probability that a certain cell o is  occupied, 
given that the robot sees the sensor reading  S .

p( S | o )  =    

The probability of event S, given event o .

The probability that the robot sees the sensor 
reading  S, given that a certain cell o is occupied.

• What is really meant by conditional probability ?

• How are these two probabilities related?
(Courtesy of Dodds)



Bayes Rule

- Bayes rule relates conditional probabilities

p( o | S )  =    
P(S|o) p(o) 

p( S )
Bayes rule

p( o ∧ S )  =  p(o|S)p(S)

- Conditional probabilities

Can we update easily ? (Courtesy of Dodds)

p( o ∧ S )  =  p(S|o)p(o)



Combining evidence (sensor fusion)

So, how do we combine evidence to create a map?

What we want -- 
odds(o|S2 ∧ S1)   

the new value of a cell in the 
map after the sonar reading S2  

What we know -- 
odds( o | S1)   the old value of a cell in the 

map (before sonar reading S2)

p(Si|o)&p(Si|o) 
the probabilities that a certain 
obstacle causes the sonar reading Si

(Courtesy of Dodds)



Evidence grids

hallway with some open doors

known map and estimated evidence grid

lab space

CMU -- Hans Moravec(Courtesy of Dodds)



Robot Mapping

represent space as a collection of cells, each with 
the odds (or probability) that it contains an 
obstacle

Lab environment

not sure
likely obstacle likely free space

• The relative locations of the robot within the map are assumed known.
• It is important that the robot odometry is correct 
• Equally plausible to consider the converse problem...

Evidence Grids...

Given a map of the environment, how do I determine where I am?

“Robot localization problem”(Courtesy of Dodds)
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Typical Motion Models

• In practice, one often finds two types of motion 
models: 
– Odometry-based 
– Velocity-based (dead reckoning) 

• Odometry-based models are used when systems 
are equipped with wheel encoders. 

• Velocity-based models have to be applied when 
no wheel encoders are given.  

• They calculate the new pose based on the 
velocities and the time elapsed.



Dead Reckoning

• Derived from “deduced reckoning” though 
this is greatly disputed (see the straight 
dope) 

• Mathematical procedure for determining 
the present location of a vehicle. 

• Achieved by calculating the current pose 
of the vehicle based on its velocities and 
the time elapsed. 



Dead Reckoning
• Integration of incremental motion 

over time 
• Given known start position/

orientation (pose) 
• Given relationship between 

motor commands and robot 
displacement (linear and 
rotational) 

• Compute current robot pose with 
simple geometric equations 

• Provides good short-term 
relative position accuracy 

• Accumulation of errors in long-
term – wheel slippage, bumps, 
etc., 

      
!!!
(From Borenstein et. al.)



Reasons for Motion Errors

ideal case different wheel 
diameters

bump carpet
and many more …



Reducing Odometry Error with 
Absolute Measurements

• Uncertainty Ellipses 
• Change shape based on other sensor 

information 
• Artificial/natural landmarks 
• Active beacons 
• Model matching – compare sensor-

induced features to features of known map 
– geometric or topological



Types of Sensors

• Odometry 
• Laser Ranging and Detection (LIDAR) 
• Acoustic (sonar, ultrasonic) 
• Radar 
• Vision (monocular, stereo etc.) 
• GPS 
• Gyroscopes, Accelerometers (Inertial Navigation) 
• Etc.



Sensor Characteristics

• Noise 
• Dimensionality of Output 

– LIDAR- 3D point 
– Vision- Bearing only (2D ray in space) 

• Range 
• Frame of Reference 

– Most in robot frame (Vision, LIDAR, etc.) 
– GPS earth centered coordinate frame 
– Accelerometers/Gyros in inertial coordinate frame



Dynamic Bayesian Network for 
Controls, States, and Sensations



Probabilistic Motion Models

• To implement the Bayes Filter, we need 
the transition model p(x | x’, u). 

• The term p(x | x’, u) specifies a posterior 
probability, that action u carries the robot 
from x’ to x. 

• p(x | x’, u) can be modeled based on the 
motion equations.



A Probabilistic Approach

• The following algorithms take a 
probabilistic approach



Two Example SLAM Algorithms

• Extended Kalman Filter (EKF) SLAM 
– Solves online SLAM problem 
– Uses a linearized Gaussian probability 

distribution model 
• FastSLAM 

– Solves full SLAM problem 
– Uses a sampled particle filter distribution 

model



Extended Kalman Filter SLAM

• Solves the Online SLAM problem using a 
linearized Kalman filter 

• One of the first probabilistic SLAM 
algorithms 

• Not used frequently today but mainly 
shown for its explanatory value



EKF Example

t=0

•Initial State and Uncertainty 

•Using Range Measurements



EKF Example

t=1

•Predict Robot Pose and Uncertainty 
at time 1



EKF Example

t=1

•Correct pose and pose uncertainty 

•Estimate new feature uncertainties 



EKF Example

t=2

•Predict pose and uncertainty of pose 
at time 2 

•Predict feature measurements and 
their uncertainties



EKF Example

t=2

•Correct pose and mapped features 

•Update uncertainties for mapped 
features 

•Estimate uncertainty of new features



Application from Probabilistic 
Robotics

[courtesy by John Leonard]



Application from Probabilistic 
Robotics

odometry estimated trajectory

[courtesy by John Leonard]



Correlation Between Measurement 
Association and State Errors

!
• Association between measurements and features is unknown 
• Errors in pose and measurement associations are correlated

Robot pose 
uncertainty

Correct Associations Robot’s Associations



Measurement Associations
• Measurements must be associated with particular features 

– If the feature is new add it to the map 
– Otherwise update the feature in the map 

• Discrete decision must be made for each feature 
association, ct



Problems With EKF SLAM

• Only one set of measurement to feature 
associations considered 
– Uses maximum likelihood association 
– Little chance of recovery from bad 

associations 
• O(N3) matrix inversion required



FastSLAM

• Solves the Full SLAM problem using a 
particle filter



Particle Filters

• Represent probability distribution as a set of 
discrete particles which occupy the state space



Particle Filter Update Cycle

• Generate new particle distribution given 
motion model and controls applied 

• For each particle 
– Compare particle’s prediction of 

measurements with actual measurements 
– Particles whose predictions match the 

measurements are given a high weight 
• Resample particles based on weight



Resampling

• Assign each particle a weight depending 
on how well its estimate of the state 
agrees with the measurements 

• Randomly draw particles from previous 
distribution based on weights creating a 
new distribution



Particle Filter Advantages

• Can represent multi-modal distributions



Particle Filter Disadvantages

• Number of particles grows exponentially 
with the dimensionality of the state space 
– 1D – n particles 
– 2D – n2 particles 
– mD – nm particles



FastSLAM Formulation

• Decouple map of features from pose 
– Each particle represents a robot pose 
– Feature measurements are correlated thought 

the robot pose 
– If the robot pose was known all of the features 

would be uncorrelated 
– Treat each pose particle as if it is the true 

pose, processing all of the feature 
measurements independently



Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

 landmark positions

poses map observations & movements

Factorization first introduced by Murphy in 1999



Factored Posterior

Robot path posterior 
(localization problem) Conditionally 

independent  
landmark positions



Rao-Blackwellization

§ Dimension of state space is drastically reduced by 
factorization making particle filtering possible



FastSLAM
§ Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002] 
§ Each landmark is represented by a 2x2  

Extended Kalman Filter (EKF) 
§ Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, θ

Landmark 1 Landmark 2 Landmark M…x, y, θParticle 
#1

Landmark 1 Landmark 2 Landmark M…x, y, θParticle 
#2

Particle 
N

…



FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1 
Filter

Landmark #2 
Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1 
Filter

Landmark #2 
Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1



FastSLAM  Complexity

• Update robot particles based 
on control ut-1 

• Incorporate observation zt into 
Kalman filters 

• Resample particle set

N = Number of particles 
M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle



Multi-Hypothesis Data Association
• Data association is 

done on a per-particle 
basis 

• Robot pose error is 
factored out of data 
association decisions



Per-Particle Data Association

Was the observation 
generated by the red 
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

• Two options for per-particle data association 
– Pick the most probable match 
– Pick an random association weighted by  

the observation likelihoods 
• If the probability is too low, generate a new landmark



MIT Killian Court

§ The “infinite-corridor-dataset” at MIT



MIT Killian Court



Conclusion

• SLAM is a hard problem which is not yet 
fully solved  

• Probabilistic methods which take account 
of sensor and process model error tend to 
work best 

• Effective algorithms must be robust to bad 
data associations which EKF SLAM is not 

• Real time operation limits complexity of 
algorithms which can be applied
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Additional Reference

• Many of the slides for this presentation are 
from the book Probabilistic Robotic’s 
website 
– http://www.probabilistic-robotics.org

http://www.probabilistic-robotics.org/

