Terramechanics \mathbf{V}

- Note - I haven't posted the slides from Tuesday because there were a number of typos (and outright mistakes) that were (almost) all corrected on Thursday. This set of slides are the corrected slides from both Tuesday and Thursday in the appropriate order to make a full set of slides on terramechanics.
- I know this is late (and I apologize for that), so if you would like extra time on the problem set, take it with no penalty. I'd rather you understand and do it right than worry about grades at this point.

Terramechanics \mathbf{V} ENAE 788X - Planetary Surface Robotics

LRV Three-View and Dimensions

Terramechanics V ENAE 788X - Planetary Surface Robotics

Location of LRV Center of Gravity

Terramechanics \mathbf{V}

Rover Climbing/Descending Slope

Terramechanics \mathbf{V} ENAE 788X - Planetary Surface Robotics

Static Equilibrium Conditions

\sum Forces \perp to surface $\quad \sum$ Forces $\|$ to surface

$$
N_{1}+N_{2}=m g \cos \theta \quad T_{1}+T_{2}=m g \sin \theta
$$

\sum Torques about rear axle

$$
T_{1} r+T_{2} r+N_{1} \ell=m g[(\ell-a) \cos \theta-h \sin \theta]
$$

Friction forces proportional to force into surface

$$
\frac{T_{1}}{N_{1}}=\frac{T_{2}}{N_{2}}
$$

Four equations, four unknowns

Static Equilibrium Solutions

$$
\begin{gathered}
N_{1}=m g\left[\left(1-\frac{a}{\ell}\right) \cos \theta-\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta\right] \\
N_{2}=m g\left[\frac{a}{\ell} \cos \theta+\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta\right] \\
T_{2}=\frac{N_{2}}{N_{1}+N_{2}} m g \sin \theta \\
T_{1}=\frac{N_{1}}{N_{1}+N_{2}} m g \sin \theta
\end{gathered}
$$

Loaded LRV Weight Distribution

$$
\begin{aligned}
m & =690 \mathrm{~kg} \\
m g & =1120 \mathrm{~N} \\
\ell & =228.6 \mathrm{~cm} \\
r & =40.6 \mathrm{~cm} \\
a & =114.3 \mathrm{~cm} \\
h & =50.8 \mathrm{~cm} \\
N_{1}=N_{2} & =279.8 \mathrm{~N} \\
b & =22.9 \mathrm{~cm}
\end{aligned}
$$

Terramechanics \mathbf{V}

Normal and Shear Wheel Force w/Slope

Longitudinal Dynamic Conditions

\sum Forces \perp to surface $\quad \sum$ Forces $\|$ to surface

$$
N_{1}+N_{2}=m g \cos \theta \quad T_{1}+T_{2}=m g \sin \theta+m a_{x}
$$

\sum Torques about rear axle

$$
T_{1} r+T_{2} r+N_{1} \ell=m g[(\ell-a) \cos \theta-h \sin \theta]
$$

Friction forces proportional to force into surface

$$
\frac{T_{1}}{N_{1}}=\frac{T_{2}}{N_{2}}
$$

Four equations, four unknowns

Longitudinal Dynamic Solutions

$$
\begin{gathered}
N_{1}=m g\left[\left(1-\frac{a}{\ell}\right) \cos \theta-\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta-\frac{a_{x}}{g}\right] \\
N_{2}=m g\left[\frac{a}{\ell} \cos \theta+\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta+\frac{a_{x}}{g}\right] \\
T_{2}=\frac{N_{2}}{N_{1}+N_{2}}\left(m g \sin \theta+m a_{x}\right) \\
T_{1}=\frac{N_{1}}{N_{1}+N_{2}}\left(m g \sin \theta+m a_{x}\right)
\end{gathered}
$$

Overturn Limits

$$
\left(1-\frac{a}{\ell}\right) \cos \theta_{l i m i t}-\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta_{l i m i t}=\frac{a_{x}}{g}
$$

For the static case $\left(a_{x}=0\right)$

$$
\begin{gathered}
\left(1-\frac{a}{\ell}\right) \cos \theta_{\text {limit }}=\left(\frac{h}{\ell}+\frac{r}{\ell}\right) \sin \theta_{\text {limit }} \\
\tan \theta_{\text {limit }}=\frac{\left(1-\frac{a}{\ell}\right)}{\left(\frac{h}{\ell}+\frac{r}{\ell}\right)}=\frac{\ell-a}{h+r}
\end{gathered}
$$

Limiting accel on flat ground $a_{x, \text { limit }}=g\left(1-\frac{a}{\ell}\right)$

Limiting Slope Under Acceleration

$60=\theta_{\text {limit }}$

0
0.1
0.2
0.3
0.4
0.5
0.6

Acceleration

Compression Resistance (Lunar Soil)

$$
\begin{gathered}
R_{c}=\frac{1}{n+1}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{2 n+1}}\left(\frac{3 W_{w}}{(3-n) \sqrt{d}}\right)^{\frac{2(n+1)}{2 n+1}} \\
n=1 \\
k_{c}=0.14 \mathrm{~N} / \mathrm{cm}^{2} \\
k_{\phi}=0.827 \mathrm{~N} / \mathrm{cm}^{3} \\
R_{c}=\frac{1}{2}\left(k_{c}+b k_{\phi}\right)^{\frac{-1}{3}}\left(\frac{3 W_{w}}{2 \sqrt{d}}\right)^{\frac{4}{3}} \\
R_{c}=20.89 \mathrm{~N} / \text { wheel }=83.57 \mathrm{~N}(\text { total })
\end{gathered}
$$

Lunar Regolith Soil Properties

Symbol	Description	Value	Used in
n	Exponent of sinkage	1.0	EVERYTHING
k	Cohesive modulus of soil deformation	$1400 \mathrm{~N} / \mathrm{m}$	Rc, Rb, H
k	Frictional modulus of soil deformation	820,000 N/m	Rc, Rb, H
ϑ	Slope angle		Rg
Cf	Coefficient of friction	0.05	Rr
Y	Soil density	$1.6 \mathrm{~g} / \mathrm{cm}$	Rb
Co	Cohesive strength of soil	$0.017 \mathrm{~N} / \mathrm{cm}$	H
¢	Angle of internal friction	30-40 degrees	Rb
K	Coefficient of soil Slip	1.8 cm	H
s	slip	0.02-0.05	H

Equations for Compression Resistance

$$
z=\left[\frac{3 W_{w}}{(3-n) b k \sqrt{d}}\right]^{\frac{2}{2 n+1}}
$$

$$
W_{w}=\text { weight on wheel }
$$

$$
d=\text { wheel diameter }
$$

$$
R_{c}=\left(\frac{b k}{n+1}\right) z^{n+1}
$$

$R_{c}=$ compression resistance (per wheel)
Correction - Page 25 of L03

LRV Sinkage in Lunar Regolith

$$
\begin{gathered}
z=\left[\frac{3 W_{w}}{2\left(k_{c}+b k_{\phi}\right) \sqrt{d}}\right]^{\frac{2}{3}} \\
z=1.812 \mathrm{~cm}
\end{gathered}
$$

Back wheel is a tandem wheel

$$
W_{w}=\frac{2}{3}\left(k_{c}+b k_{\phi}\right) \sqrt{d} z^{\frac{2}{3}}
$$

Tandem Wheels, $\mathrm{n}=1$

$$
N_{i}=\frac{2}{3}\left(k_{c}+b k_{\phi}\right) \sqrt{d} \sqrt{z_{i}-z_{i-1}}\left(2 z_{i}-z_{i-1}\right)
$$

We already calculated $z_{1}=1.812 \mathrm{~cm}$

$$
N_{2}=\frac{2}{3}\left(k_{c}+b k_{\phi}\right) \sqrt{d} \sqrt{z_{2}-z_{1}}\left(2 z_{2}-z_{1}\right.
$$

Solve for z_{2} (numerically would be easiest)

$$
z_{2}=2.443 \mathrm{~cm}
$$

This is the total depth for wheel 2

Compaction Resistance, $\mathrm{n}=1$

$$
\begin{gathered}
R_{c}=\frac{1}{2}\left(k_{c}+b k_{\phi}\right) z^{2} \\
R_{c}=56.92 \mathrm{~N}(\text { per side }) \Longrightarrow \\
R_{c}=113.8 \mathrm{~N}
\end{gathered}
$$

Or, You Could Cheat...

Approximation formulas for $\mathrm{n}=1$ Two wheels in tandem

$$
R_{c}=\frac{1.7}{2}\left(k_{c}+b k_{\phi}\right) z^{2}
$$

Three wheels in tandem

$$
R_{c}=\frac{2.3}{2}\left(k_{c}+b k_{\phi}\right) z^{2}
$$

z is the sinkage depth of the front wheel in both cases
R_{g}, R_{f} are straightforward

Bulldozing Resistance

General case:

All angles in radians!

$$
\begin{aligned}
R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}\right. & \left.+\gamma z^{2} K_{\gamma}\right) \\
& +\frac{\ell_{o}^{3} \gamma}{3}\left(\frac{\pi}{2}-\phi\right)+c \ell_{o}^{2}\left[1+\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\right] \\
\ell_{o} & =z \tan ^{2}\left(\frac{\pi}{4}-\frac{\phi}{2}\right)
\end{aligned}
$$

$\ell_{o} \equiv$ soil disruption depth, and is not the same as contact length ℓ For tracked vehicles, only the first term applies:

$$
R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}+\gamma z^{2} K_{\gamma}\right)
$$

Bulldozing Resistance (Rb)

Symbol	Description	Value
φ	Angle of internal friction	30-40 degrees for Lunar Regolith
\boldsymbol{V}	Soil density	$\begin{aligned} & \mathrm{H} .6 \mathrm{gm} \\ & 0.002595 \mathrm{~N} / \mathrm{cm} \end{aligned}$
Co	Cohesive strength of soil	0.017
Lo (degrees)	Distance of rupture	$l o=z \tan ^{2}\left(45^{\circ}-\frac{\varphi}{2}\right)$
Kc (degrees)	Modulus of cohesion of soil deformation	$k c=(N c-\tan (\varphi))\left(\cos ^{2}(\varphi)\right)$
$\begin{gathered} K \\ \text { (degrees) } \end{gathered}$	Modulus of density of soil deformation	$K_{\gamma}=\left(\frac{2 N_{\gamma}}{\tan \varphi}+1\right) \cos ^{2}(\varphi)$
Nc (radians)	Coefficient of passive earth pressure	$N c=\cot (\varphi)\left(\frac{e^{2\left(\frac{3 \pi}{4}-\frac{\varphi}{2}\right) \tan (\varphi)}}{2 \cos ^{2}\left(\frac{\pi}{4}+\frac{\varphi}{2}\right)}-1\right)$
$\begin{gathered} \alpha \\ \text { (degrees) } \end{gathered}$	Angle of approach of the wheel	$\alpha=\cos ^{-1}\left(1-\frac{2 z}{D}\right)$

Bulldozing Example (1)

$$
\phi=33^{\circ}=0.576 \mathrm{rad}
$$

$$
\alpha=\cos ^{-1}\left(1-\frac{2 z}{d}\right)=\cos ^{-1}\left(1-\frac{2(1.812)}{81.2}\right)=17.18^{\circ}=0.2999 \mathrm{rad}
$$

$$
\begin{gathered}
\ell_{o}=z_{1} \tan ^{2}\left(\frac{\pi}{2}-\frac{\phi}{4}\right)=0.5341 \\
N_{q}=\frac{e^{(1.5 \pi-\phi) \tan \phi}}{2 \cos ^{2}\left(\frac{\pi}{4}+\frac{\phi}{2}\right)}=32.23 \\
N_{c}=\frac{N_{q}-1}{\tan \phi}=48.09
\end{gathered}
$$

Bulldozing Example (2)

$$
\begin{gathered}
N_{\gamma}=\frac{2\left(N_{q}+1\right) \tan \phi}{1+0.4 \sin 4 \phi}=33.27 \\
K_{c}=\left(N_{c}-\tan \phi\right) \cos ^{2} \phi=33.37 \\
K_{\gamma}=\left(\frac{2 N_{\gamma}}{\tan \phi}+1\right) \cos ^{2} \phi=72.77 \\
\ell=\frac{d}{2} \cos ^{-1}\left(1-\frac{2 z}{d}\right)=12.18 \mathrm{~cm} \\
\gamma=0.002595 \frac{\mathrm{~N}}{\mathrm{~cm}^{3}} ; \quad c_{o}=0.017 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}}
\end{gathered}
$$

Terzhagi Parameters

Terramechanics \mathbf{V}

Bulldozing Example (3)

$R_{b}=\frac{b \sin (\alpha+\phi)}{2 \sin \alpha \cos \phi}\left(2 z c K_{c}+\gamma z^{2} K_{\gamma}\right)$

$$
+\frac{\ell_{o}^{3} \gamma}{3}\left(\frac{\pi}{2}-\phi\right)+c \ell_{o}^{2}\left[1+\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\right]
$$

$\left\langle R_{b}\right\rangle=c m\left(c m \frac{N}{c m^{2}}+\frac{N}{c m^{3}} c m^{2}\right)+c m^{3} \frac{N}{c m^{3}}+\frac{N}{c m^{2}} c m^{2}$
$R_{b}=94.98+0.000131+0.014=95.00 N$ per leading wheel

$$
R_{b, \text { total }}=190.0 \mathrm{~N}
$$

Tractive Force per Wheel (No Grousers)

$$
\begin{gathered}
H=\left[A C_{b}+W_{w} \tan \phi_{b}\right]\left[1-\frac{K}{\ell}\left(1-e^{\frac{-s \ell}{K}}\right)\right] \\
A=\text { area of contact }=b \ell \\
C_{b}=\text { coefficient of soil/wheel cohesion } \\
\phi_{b}=\text { wheel/soil friction angle } \\
s=\text { wheel slip ratio } \\
K=\text { coefficient of soil slip } \\
\ell=\text { length of contact patch }
\end{gathered}
$$

$$
H_{(s=0)}=251.6 \mathrm{~N}
$$

Tractive Force per Wheel (With Grousers)

$H=\left[b \ell C_{b}\left(1+\frac{2 h}{b}\right) N_{g}+W \tan \phi_{b}\left(1+0.64 \frac{h}{b} \arctan \frac{b}{h}\right)\right]\left[1-\frac{K}{\ell}\left(1-e^{-\frac{s \ell}{K}}\right)\right]$
$A=$ area of contact $\cong b \ell$
$C_{b}=$ soil/wheel cohesion $=0.017 \mathrm{~N} / \mathrm{cm}^{2}$ $\phi_{b}=$ wheel/soil friction angle $=35^{\circ}$ $s=$ wheel slip ratio (typ. 0.02-0.05) $K=$ coefficient of soil slip $=1.8 \mathrm{~cm}$ $\ell=$ length of contact patch $=\frac{D}{2} \cos ^{-1}\left(1-\frac{2 z}{D}\right)$ $h=$ height of grouser

> All values typical for lunar soil

Effect of Soil Thrust Fraction

Soil Thrust Fraction $\left[1-\frac{K}{\ell}\left(1-e^{-\frac{s \ell}{K}}\right)\right]$

Basic Equation of Vehicle Propulsion

$$
D P=H-\left(R_{c}+R_{b}+R_{g}+R_{r}\right)
$$

- DP: Drawbar pull (residual drive force)
- H: Maximum tractive force of wheels
- R_{c} : Compaction resistance
- R_{b} : Bulldozing resistance
- Rg_{g} : Gravitational resistance
- R_{r} : Rolling resistance (internal)

Surface Interaction Modeling Engineering Methods

Karl lagnemma, Ph.D. Massachusetts Institute of Technology

Terramechanics

- Terramechanics
- Engineering science that studies the interaction between vehicles and (deformable) terrain
- Soil mechanics and vehicle mechanics
- Analysis of wheeled, tracked, legged systems

An Engineer's Job

- Design vehicle for robust mobility on Mars surface
- Wheels, tracks, legs?
- Number, diameter and width?
- Required nominal torque?
- Required peak power?
- Obstacle crossing performance?
- Suspension configuration?
- Steering mechanism?

NASA's Mars Science Laboratory (MSL)
Design/Test Model (DTM) in the sandy Mars Yard at JPL

- How to address in a principled, systematic fashion?

An Engineer's Reality

- How to model this scenario?
- High sinkage
- High slip ratio
- Material transport effects
- Clogged grousers
- Variables of interest
- Soil properties
- Soil state
- Wheel load

- Wheel geometric properties
- Wheel linear and angular velocity

Terramechanics

- Limitations of terramechanics modeling
- Attempt to model all soil types with single set of relations
- Frictional soils, crusty materials, clay
- Assumption of homogeneity
- Attempt to apply (semi)-empirical models in predictive manner
- Little consideration of off-nominal operation
- Difficulty in employing quasi-static models for dynamic simulation
- Assertion: General approach remains valid
- Not all limitations are fundamental
- Goals
- Understand limits of applicability of terramechanics
- Identify areas requiring new research

Pressure-Sinkage

- Pressure-sinkage relationship for geomaterials

$$
\sigma=k z^{n}
$$

- σ is normal pressure
- k is empirical constant
- z is sinkage from free surface
- Bekker proposed semiempirical formulation

Cohesion-dependent soil coefficient

$$
\sigma_{n}=\left(\frac{\tilde{k}_{c}}{b}+k_{\phi}\right) z^{n} \quad \text { Sriction-dependent soil coeffi }
$$

M. G. Bekker. Theory of Land Locomotion. Ann Arbor, University of Michigan Press, 1950.

Pressure-Sinkage for Wheels

- Can compute normal stress for wheels along terrain interface

$$
\begin{aligned}
& \sigma_{n f}=\left(\frac{k_{c}}{b}+k_{\phi}\right)\left[R\left(\cos (\theta)-\cos \left(\theta_{e}\right)\right)\right]^{n} \\
& \sigma_{n r}=\left(\frac{k_{c}}{b}+k_{\phi}\right)\left[R\left(\cos \left(\theta_{e}-\left(\frac{\theta-\theta_{r}}{\theta_{N}-\theta_{r}}\right)\left(\theta_{e}-\theta_{N}\right)\right)-\cos \left(\theta_{e}\right)\right) \theta_{m}^{n} \quad \theta_{b} \leq \theta \leq \theta_{e}\right.
\end{aligned}
$$

Pressure-Sinkage for Wheels

- Sinkage plays critical role in mobility
- Increased sinkage causes increased motion resistance
- Energy lost in terrain compaction
- Sinkage can be divided in two components
- Static sinkage

- Dynamic sinkage (or slip-sinkage)

Pressure-Sinkage for Wheels

- Sinkage plays critical role in mobility
- Increased sinkage causes increased motion resistance
- Energy lost in terrain compaction

Shearing Properties of Soil

- Motion of a wheel or track causes shearing at the soil interface
- Resistance forces generated by soil mass
- Depends on slip, loading conditions

Figure 2.20: Flow patterns and soil wedge formed in front of a locked rigid wheel ar 100%

Figure 2.19: Flow patterns beneath a driven rigid wheel at 100% slip in sand

Shearing Properties of Soil

- Shear stress at wheel-soil interface produces traction
- Shear stress is a function of shear displacement
- Relative motion required to generate traction
- Non-zero slip ratio
- Soil failure estimated through Mohr-Coulomb failure criterion

$$
\tau=c+\sigma \tan \phi
$$

- τ is failure stress
$-c$ is soil cohesion

Apparent cohasion C

- ϕ is soil internal friction angle

Shearing Properties of Soil

- Can compute shear stress at wheel-terrain interface
- Janosi-Hanamoto formulation

Soil shear displacement
Limit tangential stress
$\tau_{x}(\theta)=\tau_{\max }^{\downarrow}\left(1-e^{\frac{-j_{x}}{k_{x}}}\right) \quad$ Soil shear deformation modulus

$$
\tau_{\max }=c+\sigma_{n}(\theta) \tan \phi
$$

- Soil shear displacement

$$
j_{x}(\theta)=\int_{\theta_{b}}^{\theta_{e}} R_{u}\left[1-\left(1-s_{d}\right) \cos (\theta)\right] d \theta
$$

Slip Ratio

- Slip ratio is measure of relative motion between wheel and terrain surface
- For driven wheel, distance traveled is less than that in free rolling
- When slip ratio $=1$, spinning in place
- When slip ratio $=0$, pure rolling
- When slip ratio $=-1$, skidding

$$
\begin{gathered}
u \leq \omega R \\
d \leq \theta R \\
s_{d}=1-\frac{u}{\omega R}
\end{gathered}
$$

Terrain Interaction Forces

- Forces between wheel and terrain can be computed from stress distribution along contact path
- Vertical load

$$
W=b R \int_{\theta_{b}}^{\theta_{e}} \tau_{x}(\theta) \sin (\theta)+\sigma_{n}(\theta) \cos (\theta) d \theta
$$

- Longitudinal force
$F_{x}=b R \int_{\theta_{b}}^{0_{e}} \tau_{x}(\theta) \cos (\theta)-\sigma_{n}(\theta) \sin (\theta) d \theta$
- Torque on wheel axle

$$
T=b R^{2} \int_{\theta_{b}}^{\theta_{c}} \tau_{x}(\theta) d \theta
$$

Summary

- Stresses at wheel-terrain interface
- Decompose into normal and shear stresses
- Modeled with semi-empirical formulations
- Integration yields forces acting on vehicle
- Given
- Terrain properties
- Slip
- Loading conditions
- Can compute
- Sinkage
- Thrust
- Required torque

Figure 1.3: Comparison of various configurations for agricultural tractors (Reprinted by permission of ISTVS from Sohne, 1976)

Effect of Grousers

- Grousers are small features on wheel surface
- Designed to improve traction and climbing performance
- Have been modeled through Terzaghi's bearing capacity theory

and

20

Effect of Grousers

- Grouser effect has also been empirically studied
- Grouser height, spacing, geometry affect torque, traction, turning performance

(b)

Ding L. et al. Journal of Terramechanics 48, 2011, 27-45

Lateral Forces

- Lateral forces act on wheel sidewall during turning
- Forces arise from soil shearing and bulldozing

$$
F_{\boldsymbol{y}}=F_{y s}+F_{y b d}{ }^{\underline{y}} F_{y b d}=w \int_{\theta_{b}}^{\theta_{c}}\left(\gamma_{s} N_{\gamma}+c N_{c}+q N_{q}\right) \cos \left(\delta_{f}\right) d \theta
$$

Lateral Force - Bulldozing

- Like grouser effect, bulldozing is typically modeled through soil bearing capacity analysis

- N -factors are function of soil angle of internal friction
$N_{\gamma}=\frac{2\left(N_{q}+1\right) \tan \phi}{1+0.4 \sin 4 \phi} \quad N_{c}=\frac{N_{q}-1}{\tan \phi} \quad N_{q}=\frac{e^{(1.5 \pi-\phi) \tan \phi}}{2 \cos ^{2}(\pi / 4+\phi / 2)}$

Repetitive Loading

- Rover trailing wheels may pass through soil deformed by leading wheels
- Repetitive loading alters soil behavior

- Increases compaction (relative density)

Repetitive Loading

- Multi pass can be modeled by modifying soil parameters according to number and type of passes $\quad \longrightarrow$ Wheel slip of

Classical Model Limitations

- Terramechanics developed in context of large vehicles, for design trade space analysis
- Would like to apply to smaller, lighter systems, for dynamic sim
- Key limitations
- Effect of terrain inhomogeneity
- Soil condition dependence
- Layering, relative density, moisture content
- Scale effects
- Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
- Slip ratio definition
- Rate dependence

הוWויו

Terrain Inhomogeneity (1)

Classical Model Limitations

- Terramechanics developed in context of large vehicles, for design trade space analysis
- Would like to apply to smaller, lighter systems, for dynamic sim
- Key limitations
- Effect of terrain inhomogeneity
- Soil condition dependence
- Layering, relative density, moisture content
- Scale effects
- Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
- Slip ratio definition
- Rate dependence

Terrain Inhomogeneity

- Pressure-sinkage relation characterizes wide range of terrains with single equation
- Loose, granular soils, crusty materials, clay

$$
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

- Observations: significant experimental variation wrt soil condition
- Layering
- Relative density
- Moisture content

Terrain Inhomogeneity (1)

- Bekker theory assumes homogenous soil
- Soil is often layered, inhomogeneous
- Lack of analytical formulations for pressure-sinkage, shear stress-shear deformation

Inhomogeneous

Terrain Inhomogeneity (1)

- Pressure-sinkage relations

$$
\begin{array}{cc}
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n} & \\
\sigma_{n \rho}=\left(\frac{k_{c}}{b}+k_{\phi}\right)\left[R\left(\cos (\theta)-\cos \left(\theta_{e}\right)\right)\right]^{n} & \theta_{m}<\theta \leq \theta_{e} \\
\sigma_{n r}=\left(\frac{k_{c}}{b}+k_{\phi}\right)\left[R\left(\cos \left(\theta_{e}-\left(\frac{\theta-\theta_{r}}{\theta_{N}-\theta_{r}}\right)\left(\theta_{e}-\theta_{N}\right)\right)-\cos \left(\theta_{e}\right)\right)\right]^{n} & \theta_{b} \leq \theta \leq \theta_{m}
\end{array}
$$

- Shear stress-shear displacement

How to define?

$$
\tau_{x}(\theta)=\tau_{\max }\left(1-e^{\frac{-j_{x}}{k_{x}}}\right) \quad \tau_{\max }=c+\sigma_{n}(\theta) \tan \phi
$$

Terrain Inhomogeneity (2)

- Bekker theory (generally) ignores soil state
- Large vehicles tend to compact terrain to dense state upon passage
- For small rovers, weight is insufficient to compact soil
- Relative density can strongly influence shear stress at interface
- Strong influence on thrust
- Strong influence on torque

Shear box test of MMS

Terrain Inhomogeneity (2)

- Bekker theory (generally) ignores soil state
- Large vehicles tend to compact terrain to dense state upon passage
- For small rovers, weight is insufficient to compact soil
- Relative density can strongly influence shear stress at interface
- Strong influence on thrust

- Strong influence on torque during digging/scooping

Terrain Inhomogeneity

- Questions (Solutions?)
- How to compute sinkage in inhomogeneous soil?
- Express sinkage in integral form (layered)?

$$
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

- Effective parameters for mixed soils?
- How to compute failure of layered (crusty) soil?

$$
\tau_{\max }=c+\sigma_{n}(\theta) \tan \phi
$$

- Piecewise formulation?
- Smoothness of stress distribution?
- How to represent parameters?
- Intervals? Distributions?
- State dependent? (For all soils, or only some?)
- How to represent governing equations?
- Deterministic? Stochastic?

Classical Model Limitations

- Terramechanics developed in context of large vehicles, for design trade space analysis
- Would like to apply to smaller, lighter systems, for dynamic sim
- Key limitations
- Effect of terrain inhomogeneity
- Soil condition dependence
- Layering, relative density, moisture content
- Scale effects
- Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
- Slip ratio definition
- Rate dependence

Scale Effects (1)

- Pressure-sinkage relations developed under flat plate assumption
load

$$
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

- Reasonable for large vehicles
- Uniform stress distribution at interface

Scale Effects (1)

- Pressure-sinkage relations developed under flat plate assumption

- What about for small vehicle, with high wheel curvatures?
- Stress distribution at interface nonuniform

- Component of normal stress balances load

Scale Effects (1)

- Result: Poor prediction of sinkage
- Why is this?
- Intrinsic parameters not really intrinsic

$$
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

IIIT

Scale Effects (1)

Bevameter plate

Tire imprint

Scale Effects (2)

- Soil shear failure is governed by soil cohesion and internal friction angle

$$
\tau_{\max }=c+\sigma_{n}(\theta) \tan \phi
$$

- Cohesion often measured at high normal stress
- At low normal loads, effect of cohesion can dominate

Scale Effects (2)

- Soil shear failure is governed by soil cohesion and internal friction angle

$$
\tau_{m a x}=c+\sigma_{n}(\theta) \tan \phi
$$

- Cohesion often measured at high normal stress
- At low normal loads, effect of cohesion can dominate

Scale Effects

- Questions (Solutions?)
- Can we formulate terramechanics relations with intrinsic parameters?
- Consistent results across scales
- Can we develop in situ measurement/estimation procedures for parameter estimation?
- Can we develop lab test devices/procedures for measurement at low normal stress?

Classical Model Limitations

- Terramechanics developed in context of large vehicles, for design trade space analysis
- Would like to apply to smaller, lighter systems, for dynamic sim
- Key limitations
- Effect of terrain inhomogeneity
- Soil condition dependence
- Layering, relative density, moisture content
- Scale effects
- Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
- Slip ratio definition
- Rate dependence

Slipping and Sinking (1)

- Terramechanics models are not rate dependent

- Studies on large wheels show that at higher velocity ${ }^{1,2}$:
- Sinkage decreases
- Traction improves

- Experiments ${ }^{3}$ on small wheels have suggested little influence

3. Ding L. et al./Journal of Terramechanics 48, 2011, 27-45

Slipping and Sinking (1)

- Experiments with MER wheels have shown significant velocity effect
- Plot of thrust force vs. vertical wheel load
- Vertical array of same-color data points: slip increasing top to bottom (83 \%, 92 \%, 98 \%)

Slipping and Sinking (1)

- Experiments with MER wheels have shown significant velocity effect
- Resistance from blocked RF wheel vs wheel load and drag velocity

Driving resistance (ISIL-SIM)

Slipping and Sinking (2)

- Terramechanics theory is not well suited for modeling motion with high slippage
- No model of material transport
- No temporal dependence

Opportunity Maneuvers
 out of Sand Trap

Slipping and Sinking (3)

- Terramechanics theory is not well suited for modeling motion with high sinkage
- Compaction resistance vs. bulldozing
- "Flattening" soil vs. "shoving" soil

$$
F_{x}=b R \int_{\theta_{b}}^{\theta_{c}} \tau_{x}(\theta) \cos (\theta)-\sigma_{n}(\theta) \sin (\theta) d \theta
$$

$$
\sigma_{n}=\left(\frac{k_{c}}{b}+k_{\phi}\right) z^{n}
$$

Slipping and Sinking (4)

- Slip ratio defines relative velocity between wheel and soil

$$
s_{d}=1-\frac{u}{\omega R}
$$

- Dictates shear stress, deformation

Slipping and Sinking (4)

- Problems with slip ratio
- Undefined at zero angular velocity
- Issue for simulation
- Transition from positive to negative not handled by theory
- Can occur during free rolling

Figure 2.18: Flow patterns and bow wave under che action of a towad ngid wheel in sand

Slipping and Sinking (4)

- Problems with slip ratio
- Undefined at zero angular velocity
- Issue for simulation
- Transition from positive to negative not handled by theory
- Can occur during free rolling

$$
s_{d}=1-\frac{u}{\omega R}
$$

Slipping and Sinking

- Questions (Solutions?)
- How to model rate dependence?
- Effect on motion resistance, thrust
- Momentum formulation of terramechanics relations?
- How to model temporal effects?
- Effect on sinkage
- Model material transport based on grouser geometry?
- For some soils? All?
- How to model motion resistance due to high sinkage?
- Piecewise formulation?
- "Unified" model of wheel slip?
- Analysis of particle motion under wheels

Conclusions

- Fundamental limitations of terramechanics modeling
- Effect of terrain inhomogeneity
- Soil condition dependence
- Layering, relative density, moisture content
- Scale effects
- Parameter scale dependence (non-intrinsic soil properties)
- Effects related to slipping and sinking
- Slip ratio definition
- Rate dependence
- Issues affect computation, simulation
- Tradeoff between generality and accuracy
- Tradeoff between measurement burden and accuracy

Terramechanics References

- Bekker, M.G, Introduction to Terrain-Vehicle Systems, Ann Arbor, University of Michigan, 1969
- Terzaghi, Theoretical Soil Mechanics, 1943
- Wong, J.Y. Theory of Ground Vehicles $2^{\text {nd }}$ Edition, Canada

