Orbital Mechanics

- Orbital Mechanics, continued
- Time in orbits
- Velocity components in orbit
- Deorbit maneuvers
- Atmospheric density models
- Orbital decay (introduction)
- Fundamentals of Rocket Performance
- The rocket equation
- Mass ratio and performance
- Structural and payload mass fractions
- Multistaging
- Optimal ΔV distribution between stages (introduction)

Calculating Time in Orbit

Orbital Mechanics
Launch and Entry Vehicle Design

Time in Orbit

- Period of an orbit

$$
P=2 \pi \sqrt{\frac{a^{3}}{\mu}}
$$

- Mean motion (average angular velocity)

$$
n=\sqrt{\frac{\mu}{a^{3}}}
$$

- Time since pericenter passage

$$
M=n t=E-e \sin E
$$

$\Rightarrow M=$ mean anomaly
$E=$ eccentric anomaly

Dealing with the Eccentric Anomaly

- Relationship to orbit

$$
r=a(1-e \cos E)
$$

- Relationship to true anomaly

$$
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}
$$

- Calculating M from time interval: iterate

$$
E_{i+1}=n t+e \sin E_{i}
$$

until it converges

Example: Time in Orbit

- Hohmann transfer from LEO to GEO
- $h_{1}=300 \mathrm{~km}$--> $r_{1}=6378+300=6678 \mathrm{~km}$
- $r_{2}=42240 \mathrm{~km}$
- Time of transit (1/2 orbital period)

$$
a=\frac{1}{2}\left(r_{1}+r_{2}\right)=24,459 \mathrm{~km}
$$

$t_{\text {transit }}=\frac{P}{2}=\pi \sqrt{\frac{a^{3}}{\mu}}=19,034 \mathrm{sec}=5 h 17 \mathrm{~m} 14 \mathrm{~s}$

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

$$
\begin{gathered}
n=\sqrt{\frac{\mu}{a^{3}}}=1.650 \times 10^{-4} \frac{\mathrm{rad}}{\mathrm{sec}} \\
e=1-\frac{r_{p}}{a}=0.7270 \\
E_{j+1}=n t+e \sin E_{j}=1.783+0.7270 \sin e_{j}
\end{gathered}
$$

$$
E=0 ; 1.783 ; 2.494 ; 2.222 ; 2.361 ; 2.294 ; 2.328
$$

$$
\text { 2.311; 2.320; 2.316; 2.318; 2.317; 2.317; } 2.317
$$

Example: Time-based Position (continued)

$$
\begin{gathered}
E=2.317 \\
r=a(1+e \cos E)=12,387 \mathrm{~km} \\
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \Longrightarrow \theta=160 \mathrm{deg}
\end{gathered}
$$

Have to be sure to get the position in the proper quadrant - since the time is less than $1 / 2$ the period, the spacecraft has yet to reach apogee --> $0^{\circ}<\theta<180^{\circ}$

Velocity Components in Orbit

$$
\begin{aligned}
& r=\frac{p}{1+e \cos \theta} \\
& v_{r}=\frac{d r}{d t}=\frac{d}{d t}\left(\frac{p}{1+e \cos \theta}\right)=\frac{-p\left(-e \sin \theta \frac{d \theta}{d t}\right)}{(1+e \cos \theta)^{2}} \\
& v_{r}=\frac{p e \sin \theta}{(1+e \cos \theta)^{2}} \frac{d \theta}{d t} \\
& 1+e \cos \theta=\frac{p}{r} \Longrightarrow v_{r}=\frac{r^{2} \frac{d \theta}{d t} e \sin \theta}{p} \\
& \vec{h}=\vec{r} \times \vec{v}
\end{aligned}
$$

Velocity Components in Orbit (continued)

$$
\begin{gathered}
\vec{h}=\vec{r} \times \vec{v} \quad h=r v \cos \gamma=r\left(r \frac{d \theta}{d t}\right)=r^{2} \frac{d \theta}{d t} \\
v_{r}=\frac{r^{2} \frac{d \theta}{d t} e \sin \theta}{p}=\frac{h e \sin \theta}{p}=\frac{\sqrt{p \mu}}{p} e \sin \theta \\
v_{r}=\sqrt{\frac{\mu}{p}} e \sin \theta \\
v_{\theta}=r \frac{d \theta}{d t}=r \frac{h}{r^{2}}=\frac{h}{r}=\frac{\sqrt{p \mu}}{r} v_{\theta}=\sqrt{\frac{\mu}{p}}(1+e \cos \theta) \\
\tan \gamma=\frac{v_{r}}{v_{\theta}}=\frac{e \sin \theta}{1+e \cos \theta} \\
\text { Orbital Mechanics } \\
\text { Launch and Enry venicle Design }
\end{gathered}
$$

Atmospheric Decay

- Entry Interface
- Altitude where aerodynamic effects become significant (acc~0.05 g)
- Typically 400,000 ft ~ $80 \mathrm{mi} \sim 120 \mathrm{~km}$
- Exponential Atmosphere
- $\rho=\rho_{o} e^{-\frac{h}{h_{\text {scale }}}}$
- Good for selected regions of atmosphere

Atmospheric Density with Altitude

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

Acceleration Due to Atmospheric Drag

$$
\operatorname{drag} \equiv D=\frac{1}{2} \rho v^{2} S c_{D}
$$

$v=$ velocity; $\rho=$ density; $S=$ reference area; $c_{D}=$ drag coefficient
acceleration due to drag $\equiv a_{d}=\frac{D}{m}=\frac{\rho v^{2}}{2} \frac{S c_{D}}{m}$

$$
\begin{aligned}
& \text { ballistic coefficient } \equiv \beta=\frac{m}{S c_{D}} \\
& \qquad a_{d}=\frac{\rho v^{2}}{2 \beta}
\end{aligned}
$$

dynamic pressure $\equiv q=\frac{\rho v^{2}}{2}$

$$
a_{d}=\frac{q}{\beta}
$$

Orbit Decay from Atmospheric Drag

Ref: Alan C. Tribble, The Space Environment Princeton University Press, 1995

Derivation of the Rocket Equation

- Momentum at time t:

$$
M=m v
$$

- Momentum at time $\dagger+\Delta t$:

$$
M=(m-\Delta m)(v+\Delta v)+\Delta m\left(v-V_{e}\right)
$$

- Some algebraic manipulation gives:

$$
m \Delta v=-\Delta m V_{e}
$$

- Take to limits and integrate:

$$
\int_{m_{\text {intital }}}^{m_{\text {final }}}\left(\frac{d m}{m}\right)=-\int_{V_{\text {initial }}}^{V_{\text {final }}}\left(\frac{d v}{V_{e}}\right)
$$

The Rocket Equation

- Alternate forms

$$
r \equiv \frac{m_{\text {final }}}{m_{\text {initial }}}=e^{-\frac{\Delta V}{V_{e}}} \Delta V=-V_{e} \ln \left(\frac{m_{\text {final }}}{m_{\text {initial }}}\right)=-V_{e} \ln (r)
$$

- Basic definitions/concepts
- Mass ratio $r \equiv \frac{m_{\text {final }}}{m_{\text {initial }}}$ or $\left\{=\frac{m_{\text {initial }}}{m_{\text {final }}}\right.$
- Nondimensional velocity change "Velocity ratio"

Rocket Equation (First Look)

Sources and Categories of Vehicle Mass

Payload
Propellants
Inert Mass

Structure
Propulsion
Avionics
Mechanisms
Thermal
Etc.

Basic Vehicle Parameters

- Basic mass summary

$$
m_{0}=m_{L}+m_{p}+m_{i} \quad m_{0}=\text { initial mass }
$$

- Inert mass fraction

$$
\delta=\frac{m_{i}}{m_{0}}=\frac{m_{i}}{m_{L}+m_{p}+m_{i}} \quad \begin{aligned}
& m_{p}=\text { propellant mass } \\
& m_{i}=\text { inert mass }
\end{aligned}
$$

- Payload fraction

$$
\lambda=\frac{m_{L}}{m_{0}}=\frac{m_{L}}{m_{L}+m_{p}+m_{i}}
$$

- Parametric mass ratio

$$
r=\lambda+\delta
$$

Rocket Equation (including Inert Mass)

The Rocket Equation for Multiple Stages

- Assume two stages

$$
\begin{aligned}
\Delta V_{1} & =-V_{e, 1} \ln \left(\frac{m_{\text {final }, 1}}{m_{\text {initial }, 1}}\right)=-V_{e, 1} \ln \left(r_{1}\right) \\
\Delta V_{2} & =-V_{e, 2} \ln \left(\frac{m_{\text {final }, 2}}{m_{\text {initial }, 2}}\right)=-V_{e, 2} \ln \left(r_{2}\right)
\end{aligned}
$$

- Assume $\mathrm{V}_{e, 1}=\mathrm{V}_{e, 2}=\mathrm{V}_{e}$

$$
\Delta V_{1}+\Delta V_{2}=-V_{e} \ln \left(r_{1}\right)-V_{e} \ln \left(r_{2}\right)=-V_{e} \ln \left(r_{1} r_{2}\right)
$$

Continued Look at Multistaging

- Converting to masses
$\Delta V_{1}+\Delta V_{2}=-V_{e} \ln \left(r_{1} r_{2}\right)=-V_{e} \ln \left(\frac{m_{\text {final }, 1}}{m_{\text {initial }, 1}} \frac{m_{\text {final }, 2}}{m_{\text {initial }, 2}}\right)$
- Keep in mind that $m_{\text {final, } 1} \sim m_{\text {initial, } 2}$
$\Delta V_{1}+\Delta V_{2}=-V_{e} \ln \left(r_{1} r_{2}\right)=-V_{e} \ln \left(\frac{m_{\text {final }, 2}}{m_{\text {initial, } 1}}\right)=-V_{e} \ln \left(r_{0}\right)$
- r_{0} has no physical significance!

Multistage Vehicle Parameters

- Inert mass fraction

$$
\delta_{0}=\frac{\sum m_{i, j}}{m_{0}}=\sum_{j=1}^{n \text { stages }}\left(\delta_{j} \prod_{t=1}^{j-1} \lambda_{1}\right)
$$

- Payload fraction

$$
\lambda_{0}=\frac{m_{L}}{m_{0}}=\prod_{i=1}^{n \text { stages }} \lambda_{i}
$$

- Payload mass/inert mass ratio $\frac{\lambda_{0}}{\delta_{0}}$

Effect of Staging

Inert Mass Fraction $\delta=0.2$

Effect of ΔV Distribution

1st Stage: LOX/LH2 2nd Stage: LOX/LH2

1st Stage Delta-V (m/sec)

Lagrange Multipliers

- Given an objective function

$$
y=f(x)
$$

subject to constraint function

$$
z=g(x)
$$

- Create a new objective function

$$
y=f(x)+\lambda[g(x)-z]
$$

- Solve simultaneous equations

$$
\frac{\partial y}{\partial x}=0 \quad \frac{\partial y}{\partial \lambda}=0
$$

Optimum ΔV Distribution Between Stages

- Maximize payload fraction (2 stage case)

$$
\lambda_{0}=\lambda_{1} \lambda_{2}=\left(r_{1}-\delta_{1}\right)\left(r_{2}-\delta_{2}\right)
$$

subject to constraint function

$$
\Delta V_{\text {total }}=\Delta V_{1}+\Delta V_{2}
$$

- Create a new objective function
$\lambda_{0}=\left(e^{-\frac{\Delta V_{1}}{V_{e 1}}}-\delta_{1}\right)\left(e^{-\frac{\Delta V_{2}}{V_{e 2}}}-\delta_{2}\right)+K\left[\Delta V_{1}+\Delta V_{2}-\Delta V_{\text {Total }}\right]$
\rightarrow Very messy for partial derivatives!

Optimum ΔV Distribution (continued)

- Use substitute objective function

$$
\max \left(\lambda_{0}\right) \Leftrightarrow \max \left[\ln \left(\lambda_{0}\right)\right]
$$

- Create a new constrained objective function

$$
\begin{aligned}
& \ln \left(\lambda_{0}\right)=\ln \left(r_{1}-\delta_{1}\right)+\ln \left(r_{2}-\delta_{2}\right) \\
& +K\left[\Delta V_{\text {Total }}+V_{e 1} \ln \left(r_{1}\right)+V_{e 2} \ln \left(r_{2}\right)\right]
\end{aligned}
$$

- Take partials and set equal to zero

$$
\frac{\partial \ln \left(\lambda_{0}\right)}{\partial r_{1}}=0 \quad \frac{\partial \ln \left(\lambda_{0}\right)}{\partial r_{2}}=0 \quad \frac{\partial \ln \left(\lambda_{0}\right)}{\partial K}=0
$$

Optimum ΔV Special Cases

- "Generic" partial of objective function

$$
\frac{\partial \ln \left(\lambda_{0}\right)}{\partial r_{i}}=\frac{1}{r_{i}-\delta_{i}}+K \frac{V_{e i}}{r_{i}}=0
$$

- Case 1: $\delta_{1}=\delta_{2} V_{e 1}=V_{e 2}$

$$
r_{1}=r_{2} \Rightarrow \Delta V_{1}=\Delta V_{2}
$$

- Case 2: $\delta_{1} \neq \delta_{2} \mathrm{~V}_{e 1}=\mathrm{V}_{e 2}$

$$
\frac{r_{1}}{\delta_{1}}=\frac{r_{2}}{\delta_{2}}
$$

- More complex cases have to be done numerically

Sensitivity to Inert Mass

$\Delta \mathrm{V}$ for multistaged rocket

$$
\begin{aligned}
& \Delta V_{t o t}=\sum_{k=1}^{n \text { stages }} \Delta V_{k}=\sum_{k=1}^{n} V_{e, k} \ln \left(\frac{m_{o, k}}{m_{f, k}}\right) \\
& m_{o, k}=m_{L}+m_{p, k}+m_{i, k}+\sum_{j=k+1}^{n} m_{p, j}+m_{i, j} \\
& m_{f, k}=m_{L}+m_{i, k}+\sum_{j=k+1}^{n} m_{p, j}+m_{i, j} \\
& \frac{\partial \Delta V_{t o t}}{\partial m_{L}} d m_{L}+\frac{\partial \Delta V_{t o t}}{\partial m_{i, j}} d m_{i, j}=0
\end{aligned}
$$

Trade-off Ratio: Payload<->Inert Mass

$$
\left.\frac{\partial m_{L}}{\partial m_{i, k}}\right|_{\partial \Delta V_{\text {Total }}=0}=\frac{-\sum_{j=1}^{k} V_{e, j}\left(\frac{1}{m_{0, j}}-\frac{1}{m_{f, j}}\right)}{\sum_{==1}^{N} V_{e, \mathrm{l}}\left(\frac{1}{m_{0, \mathrm{l}}}-\frac{1}{m_{f, \mathrm{l}}}\right)}
$$

Trade-off Ratio : Payload<->Propellant

$$
\left.\frac{\partial m_{L}}{\partial m_{p, k}}\right|_{\partial \Delta V_{\text {Total }}=0}=\frac{-\sum_{j=1}^{k} V_{e, j}\left(\frac{1}{m_{0, j}}\right)}{\sum_{i=1}^{N} V_{e, 1}\left(\frac{1}{m_{0, \mathrm{l}}}-\frac{1}{m_{f, \mathrm{l}}}\right)}
$$

Trade-off Ratio: Payload<->Exhaust Velocity

$$
\left.\frac{\partial m_{L}}{\partial V_{e, k}}\right|_{\partial \Delta V_{\text {Total }}=0}=\frac{\sum_{j=1}^{k} \ln \left(\frac{m_{0, k}}{m_{f, k}}\right)}{\sum_{=1}^{N} V_{e, \mathrm{l}}\left(\frac{1}{m_{0, \mathrm{I}}}-\frac{1}{m_{f, \mathrm{l}}}\right)}
$$

Trade-off Ratio Example: Gemini-Titan II

	Stage 1	Stage 2
Initial Mass (kg)	150,500	32,630
Final Mass (kg)	39,370	6099
Ve (m/sec)	2900	3097
$d m_{L} / \mathrm{dm}_{\mathrm{i}, \mathrm{j}}$	-0.1164	-1
$\mathrm{dm} m_{L} / \mathrm{dm}_{\mathrm{p}, \mathrm{j}}$	0.04124	0.2443
$\mathrm{dm} / \mathrm{dV}_{\mathrm{e}, \mathrm{j}}(\mathrm{kg} / \mathrm{m} / \mathrm{sec})$	2.870	6.459

Parallel Staging

- Multiple dissimilar engines burning simultaneously
- Frequently a result of upgrades to operational systems
- General case requires "brute force" numerical performance analysis

Parallel-Staging Rocket Equation

- Momentum at time t:

$$
M=m v
$$

- Momentum at time $t+\Delta t$:
(subscript "b"=boosters; "c"=core vehicle)
- Assume thrust (and mass flow rates) constant

Parallel-Staging Rocket Equation

- Rocket equation during booster burn

$$
\Delta V=-\bar{V}_{e} \ln \left(\frac{m_{\text {final }}}{m_{\text {initial }}}\right)=-\bar{V}_{e} \ln \left(\frac{m_{i, b}+m_{i, c}+\chi m_{p, c}+m_{o, 2}}{m_{i, b}+m_{p, b}+m_{i, c}+m_{p, c}+m_{o, 2}}\right)
$$

- where

$$
\bar{V}_{e}=\frac{V_{e, b} \dot{m}_{b}+V_{e, c} \dot{m}_{c}}{\dot{m}_{b}+\dot{m}_{c}}=\frac{V_{e, b} m_{p, b}+V_{e, c}(1-\chi) m_{p, c}}{m_{p, b}+(1-\chi) m_{p, c}}
$$

Analyzing Parallel-Staging Performance

Parallel stages break down into pseudo-serial stages:

- Stage "0" (boosters and core)

$$
\Delta V_{0}=-\bar{V}_{e} \ln \left(\frac{m_{i, b}+m_{i, c}+\chi m_{p, c}+m_{o, 2}}{m_{i, b}+m_{p, b}+m_{i, c}+m_{p, c}+m_{o, 2}}\right)
$$

- Stage "1" (core alone)

$$
\Delta V_{1}=-V_{e, c} \ln \left(\frac{m_{i, c}+m_{o, 2}}{m_{i, c}+\chi m_{p, c}+m_{o, 2}}\right)
$$

- Subsequent stages are as before

Modular Staging

- Use identical modules to form multiple stages
- Have to cluster modules on lower stages to make up for nonideal $\Delta \mathrm{V}$ distributions
- Advantageous from production and development cost standpoints

Module Analysis

- All modules have the same inert mass and propellant mass
- Because δ varies with payload mass, not all modules have the same δ !
- Introduce two new parameters

$$
\varepsilon=\frac{m_{i}}{m_{i}+m_{p}} \quad \sigma=\frac{m_{i}}{m_{p}}
$$

- Conversions

$$
\varepsilon=\frac{\delta}{1-\lambda}
$$

$$
\sigma=\frac{\delta}{1-\delta-\lambda}
$$

Rocket Equation for Modular Boosters

- Assuming n modules in stage 1,

$$
r_{1}=\frac{n\left(m_{i}\right)+m_{o, 2}}{n\left(m_{i}+m_{p}\right)+m_{o, 2}}=\frac{n \varepsilon+\frac{m_{o, 2}}{m_{o, \bmod }}}{n+\frac{m_{o, 2}}{m_{o, \bmod }}}
$$

- If all 3 stages use same modules, n_{j} for stage j,

$$
r_{1}=\frac{n_{1} \varepsilon+n_{2}+n_{3}+\rho_{L}}{n_{1}+n_{2}+n_{3}+\rho_{L}}
$$

- where $\rho_{L}=\frac{m_{L}}{m_{\mathrm{mod}}} ; \quad m_{\mathrm{mod}}=m_{i}+m_{p}$

