Cost Estimation and Engineering Economics

- Cost Sources
- Vehicle-level Costing Heuristics
- Learning Curves
- 2 Case Studies
- Inflation
- Cost Discounting
- Return on Investment
- Cost/Benefit Ratios
- Life Cycle Costing
- Cost Spreading UNIVERSITY OF MARYLAND

© 2012 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Cost Analysis

- Direct Costs directly related to designing, testing, building, and operating the system
- Indirect Costs required to do business, but not directly associated with development or operations
 - Management
 - Profit
 - Non-operational facilities
 - Overhead

Direct Cost Breakdown

- Non-recurring costs only incurred once in program, such as design
- Recurring costs reoccur throughout the life of the program
 - Per vehicle
 - Per flight
 - Per year

Nonrecurring Cost Sources

- Research
- Design
- Development
- Test and evaluation
- Facilities
- Tooling

Recurring Cost Sources

- Vehicle manufacturing
- Mission planning
- Pre-flight preparation and check-out
- Flight operations
- Post-flight inspection and refurbishment

5

- Range costs
- Consumables (e.g., propellants)
- Training

Refurbishment

- Cost associated with maintenance and upkeep on reusable vehicles between flights
- Refurbishment fraction f_R fraction of first unit production cost that is required for average post-flight refurbishment
 - Airliner: ~0.001%
 - Fighter jet: ~0.01%

ERSITYOF

- X-15: 3%
- Shuttle: 6-20%
- Major contributor to space flight costs

Vehicle-Level Cost Estimating Relations

$$C(\$M) = a \left[m_i \langle kg \rangle \right]^b$$

Spacecraft Type	Nonrecurring a	Nonrecurring b	1st unit production a	1st unit production b
Launch Vehicle Stage	8.662	0.55	0.2057	0.662
Manned Spacecraft	21.95	0.55	0.6906	0.662
Unmanned Planetary	13.89	0.55	1.071	0.662
Unmanned Earth Orbital	4.179	0.55	0.4747	0.662
Liquid Rocket Engine	34.97	0.55	0.1924	0.662
Scientific Instrument	2.235	0.50	0.3163	0.70
	2008\$		2008\$	• •

7

MARYLAND

Implications of CERs

- Launch Vehicles
 - Nonrecurring \$42K-\$182K/kg inert mass
 - 1st Unit \$3600-\$10.7K/kg inert mass
- Manned Spacecraft
 - Nonrecurring \$119K-\$1.56M/kg inert mass

8

– 1st Unit \$13K-\$90K/kg inert mass

Costing Applied to Launch Vehicle Design

Optimization	ΔV	Gross	Inert	NR Cost
Approach	Distribution	Mass	Masses	(\$M99)
	(m/sec)	(kg)	(kg)	
Minimize	4600	134,800	2,937	576
Gross Mass	4600		<u>10,780</u>	<u>1177</u>
			13,721	1753
Minimize	3356	139,000	2,066	474
Inert Mass	5844		<u>11,123</u>	<u>1197</u>
			13,189	1672
Minimize	2556	147,000	1,666	421
Nonrecurring	6644		<u>11,762</u>	<u>1235</u>
Cost			13,428	1656
Single Stage	9200	226,400	18,115	1566
to Orbit				

5000 kg payload, LOX/LH2 engines

9

ERSITY OF

The Learning Curve

• The effort (time, cost, etc.) to perform a test decreases with repetition

10

- Doubling the production run results in consistent fractional reduction of effort
 - "80% learning curve" 2nd unit costs 80% of 1st, 4th is 80% of 2nd, 8th is 80% of 4th...
 - $-C_n = C_1 n^p$
 - Average cost: $\bar{C}_n \approx C_1 \frac{n^p}{1-p}$

$$p = \frac{\log\left(\frac{C_2}{C_1}\right)}{\log\left(2\right)}$$

Cost and Learning Effects

Total Program Payload Mass = 1,000,000 kg

Payload Mass per Flight (kg)

Ш

ERSITY

Expendable/Reusable Trade Study

12

Total Market to Orbit=1,000,000 kg

WIVERSITY MARYLAN

Cost Modeling

- At ~\$100M/launch, worldwide annual launch revenue is ~\$6-8 B
- Potential savings by cutting costs by factor of 2 is ~\$3-4 B
- Given a 10 year development program and a 10% discount rate (government support), maximum feasible program cost for new vehicle is ~\$2.5 B/yr
- At a 50% ROI (commercial), maximum yearly expenditure is ~\$70 M
- Only economically feasible as a government program
- Budget caps reduced if launch costs don't drop as much (e.g., 75% of current launch costs gives annual NTE of \$1.25 B)
- Incorporation of advanced technology is only justified insofar as it reduces launch costs
- Design goal is effective, not efficient!!!

- Preliminary model developed to bound problem, identify critical parameters
- Assumptions:
 - Total program launch mass 20,000 MT
 - Program lifetime 20 years
 - NASA SLVLC model for cost estimates
 - 80% learning curve
 - Vehicle modeled as LOX/LH2 SSTO (δ =0.08; I_{sp} =420 sec avg.)

Effect of Refurbishment Rate

Effect of Vehicle Lifetime

Effect of Total Launch Mass

Effect of Refurbishment Fraction

Costing Conclusions (to date)

- Primary cost drivers are refurbishment and mission operations costs
 - Keep flight rate *and* production rates high to take advantage of learning curve
 - Strong sensitivity to fleet size
- Prediction: effects will be *worse* with RLV
 - Smaller fleet sizes
 - Higher (inert mass)/(payload mass) ratios
 - Effects of vehicle losses on program resiliency
- Need to add cost discounting
- Bottom line: compare cost of airbreathing RLV vs. rocket RLV vs. expendable launch vehicle (*not* a foregone conclusion!)

Inflation

- As money supply and economy expand, buying power of money decreases
- A fixed sum of money is worth less from year to year
- "Real year dollars" what specific year the money is quoted for (e.g., "\$M2000")
- "Constant year dollars" costing multiyear program based on buying power in single specified year (inflation added later)

20

Annual NASA Inflation Rates 1960-2020

21

ARYLAND

Cost of Comparable NASA Components

) 22

NASA Inflation Factors 1959-1987

23

Year	1959=1	2008=1	Year	1959=1	2008=1	Year	1959=1	2008=1
1959	1	0.1003	1969	1.551	0.1556	1978	3.044	0.3053
1960	1.043	0.1046	1970	1.658	0.1663	1979	3.333	0.3343
1961	1.076	0.1079	1971	1.762	0.1767	1980	3.69	0.3701
1962	1.119	0.1122	1972	1.863	0.1868	1981	4.063	0.4075
1963	1.159	0.1162	1973	1.969	0.1975	1982	4.38	0.4393
1964	1.211	0.1215	1974	2.111	0.2117	1983	4.66	0.4674
1965	1.252	0.1256	1975	<mark>2.</mark> 339	0.2346	1984	4.912	0.4926
1966	1.327	0.1331	1976	2.549	0.2556	1985	5.079	0.5094
1967	1.392	0.1396	TQ	2.603	0.2611	1986	5.231	0.5246
1968	1.467	0.1471	1977	2.824	0.2832	1987	5.445	0.5461

UNIVERSITY OF MARYLAND

NASA Inflation Factors 1988-2020

24

Year	1959=1	2008=1	Year	1959=1	2008=1	Year	1959=1	2008=1
1988	5.734	0.5751	1999	8.083	0.8107	2010	10.378	1.0408
1989	6.009	0.6027	2000	8.35	0.8374	2011	10.588	1.0619
1990	6.28	0.6298	2001	8.625	0.8650	2012	10.802	1.0834
1991	6.506	0.6525	2002	8.841	0.8867	2013	11.021	1.1053
1992	6.844	0.6864	2003	9.018	0.9044	2014	11.244	1.1277
1993	7.129	0.7150	2004	9.197	0.9224	2015	11.471	1.1505
1994	7.35	0.7372	2005	<mark>9.</mark> 376	0.9403	2016	11.704	1.1738
1995	7.541	0.7563	2006	9.5636	0.9592	2017	11.94	1.1975
1996	7.73	0.7753	2007	9.7646	0.9793	2018	12.182	1.2218
1997	7.838	0.7861	2008	9.9708	1.0000	2019	12.429	1.2465
1998	7.923	0.7946	2009	10.172	1.0202	2020	12.68	1.2717

NIVERSITY OF

Example: Saturn V Development Costs

Year	Real-Year \$M	\$M2006
1964	763.4	6028.8
1965	964.9	7370.5
1966	1177.3	8484.7
1967	1135.6	7802.0
1968	998.9	6512.0
1969	534.5	3295.8
1970	484.4	2794.1
1971	189.1	1026.4
1972	142.5	731.5
1973	26.3	127.7
Totals (\$M)	6417	44,174
LINIVEDCITY OF		

25

Cost Discounting

- Opportunity costs of money
- Analogous to compound interest at a bank
- Not the same thing as inflation
- Basic Definitions:
 - Net Present Value (NPV) value of future sum today
 - Net Future Value (NFV) value of sum today in the future
 - Discount Rate (r) annual interest rate

26

• Provides a method of comparing costs across multiple years

Basic Equations of Cost Discounting

• Net Present Value (NPV)

$$C_i = C_{i+n}(1+r)^{-n}$$

• Net Future Value (NFV)

$$C_{i+n} = C_i (1+r)^n$$

- NPV of constant annual payments of R $C_i = R \frac{1 - (1 + r)^{-n}}{r}$
- NFV of constant annual payments of R $C_{i+n} = R \frac{(1+r)^n - 1}{r}$

27

Cost Discounting Example: Saturn V Costs

		NPV (2000)	NFV (2010)
Year	\$M2000	(r=0.10)	(r=0.10)
2001	3255.4	2959.4	7676.0
2002	4045.8	3343.6	8672.5
2003	4831.0	3629.6	9414.3
2004	4515.3	3084.0	7999.1
2005	3830.1	2378.2	6168.5
2006	1962.0	1107.5	2872.6
2007	1687.9	866.2	2246.6
2008	626.2	292.1	757.7
2009	450.1	190.9	495.1
2010	79.5	30.6	79.5
Totals	25283.4	17882.3	46382.0
VERSITY	Υ O F	Cost Estimatio	n and Engineering

28

Cost Discounting and Breakeven

29

				NPV (2	2000)
Year	\$M2000	Flights	Revenue	Costs	Revenue
2001	3255			2959.4	
2002	4046			3343.6	
2003	4831	\$8	428/lb	3629.6	
2004	4515			3084.0	
2005	3830			2378.2	
2006	1962	3	5057	1107.5	2854.4
2007	1688	3	5057	866.2	2594.9
2008	626	3	5057	292.1	2359.0
2009	450	3	5057	190.9	2144.5
2010	79	3	5057	30.6	1949.6
Totals	25283	15	25283	17882.3	11902.3

IVERSITY OF

Breakeven with Discounting

Year	\$M2000	Flights	Revenue	Costs	Revenue
2001	3255			2959	
2002	4046			3344	
2003	4831	\$12	,660/lb	3630	
2004	4515			3084	
2005	3830			2378	
2006	1962	3	7597	1108	4288
2007	1688	3	7597	866	3899
2008	626	3	7597	292	3544
2009	450	3	7597	191	3222
2010	79	3	7597	31	2929
Totals	25283	15	37986	17882	17882

NIVERSITY OF ARYLAND 30

Effect of Moving Revenue Forward

				NPV (2	2000)	
Year	\$M2000	Flights	Revenue	Costs	Revenue	
2001	3255			2959.4		
2002	4046	\$11	480/16	3343.6		
2003	4831	Ψ11,	100710	3629.6		
2004	4515	1	2295.2	3084.0	1567.7	
2005	3830	2	4590.5	2378.2	2850.3	
2006	1962	3	6885.7	1107.5	3886.8	
2007	1688	3	6885.7	866.2	3533.5	
2008	626	3	6885.7	292.1	3212.2	
2009	450	2	4590.5	190.9	1946.8	
2010	79	1	2295.2	30.6	884.9	
Totals	25283	15	34429	17882.3	17882.3	
	SITYOF		Cost Estin	nation and Eng	gineering Ecor	nomics
/ΙΑΚΥ	LAND	31	ENAE 791 -	Launch and H	Entry Vehicle	Design

Internal Rate of Return

• Discount rate that produces breakeven

32

Effect of IRR Targets

- Investors generally require specific minimum values of IRR
- Have to increase revenue stream to achieve IRR
- Saturn V launch case:
 - 10% IRR \$11,480/lb
 - 25% IRR \$17,580/lb
 - 50% IRR \$32,700/lb

N I V E R S I T Y O F

• Venture capitalists general look for 70-100% IRR with 18-month payback

33

In-line SDLV Assumptions

- \$8.4B nonrecurring (published estimate)
- 6 year development cycle
- \$400M first unit production (shuttle parallel)
- 10 units at 85% learning curve
- \$285M average flight cost

Unit	Cost (\$M)	Unit	Cost (\$M)
1	400	6	263
2	340	7	253
3	309	8	246
4	289	9	239
5	274	10	233

Space Systems Laboratory – University of Maryland

Head-to-Head Launch Comparison

2000	Nonrecurring cost (\$M)	10,200
829	Average production cost per mission (\$M)	429
1096	Average amortized cost per mission (\$M)	1449
85	Total production run	10+10
432	NPV discounted cost per mission (\$M)	878

Space Systems Laboratory – University of Maryland

Sensitivity to Monolithic Costing

\$432M	Baseline NPV discounted cost per mission	\$878M
\$432M	Development costs cut in half	\$508M
\$432M	Production costs cut in half	\$809M
\$432M	Production is free	\$740M
\$432M	All costs cut in half	\$439M

Space Systems Laboratory – University of Maryland

Cost Spreading Estimation

- Programs very seldom occur in a single funding year
- Costs are not constant from year to year
 - Low start-up costs
 - High costs during vehicle development and fabrication
 - Low end-of-life costs
- Costs are estimated using a beta function

37

• Calculation worksheet at http://cost.jsc.nasa.gov/beta.html

Beta Function for Cost Spreading

Cumulative normalized cost function

 $C(\tau) = 10\tau^{2}(1-\tau)^{2}(A+B\tau) + \tau^{4}(5-4\tau)$ where

- C = fraction of total program cost $(0 \le C \le 1)$
- $-\tau =$ fraction of total program time ($0 \le \tau \le 1$)
- A and B = shape parameters $(0 \le A + B \le 1)$

38

- Can also define equivalent parameters c_f (location of maximum) and P (width of peak) $0 \le P \le 1$; $0.1875 \le c_c \le 0.8125$ $c_f < 0.5: A = \frac{(1-P)(c_f - 0.1875)}{0.625}; B = P\frac{c_f - 0.1875}{0.3125}$ $c_f \ge 0.5: A = \frac{P(c_f - 0.8125) + (c_f - 0.1875)}{0.625}; B = P\frac{0.8125 - c_f}{0.3125}$

ERSITY OF

Sample of Beta Function

Cost Fraction in Beta Function

Peakedness in Beta Function

Beta Curve Fit to Saturn V Data

42

A=0.371; B=0.629

References

 Richard de Neufville and Joseph H. Stafford, Systems Analysis for Engineers and Managers McGraw-Hill, 1971

43

Web-Based Costing References

- NASA Cost Estimation Web Site http://cost.jsc.nasa.gov/index.htm
- Vehicle-Level Costing Models http://cost.jsc.nasa.gov/SVLCM.html
- Inflation Adjustment http://cost.jsc.nasa.gov/inflate.html
- Learning Curves http://cost.jsc.nasa.gov/learn.html

