Thermal Protection Systems

- Comments on term project
- Comments on problem set 2
- Thermal heating analysis
 - One-dimensional flows
 - Finite difference formulation
 - Multidimensional heat flows
- Heat shields

Term Project - Top Level Requirements

- Design a system to allow the construction of one 10GW SPS per year
 - Launch vehicle(s) for cargo and personnel
 - Crew-carrying spacecraft
 - On-orbit transportation infrastructure
 - Assembly base(s) siting analysis
 - Spacecraft launch abort and EDL systems
- Mission models
 - 4000 MT/year for SPS components
 - All other logistics over and above SPS payloads

The Canonical Planar State Equations

$$v\dot{\gamma} = \frac{L}{m} - \left(1 - \frac{v^2}{v_c^2}\right)g\cos\gamma$$

$$\dot{v} = -\frac{D}{m} - g\sin\gamma$$

$$\dot{r} = \dot{h} = v\sin\gamma$$

$$r\dot{\theta} = v\cos\gamma$$

Coupled first-order ODEs

Associated Parameters to State Eqns

$$\frac{L}{m} = \frac{1}{2} \frac{\rho v^2 A c_L}{m} = \frac{\rho v^2}{2} \frac{A c_D}{m} \frac{c_L}{c_D} = \frac{\rho v^2}{2\beta} \frac{L}{D}$$

$$\frac{D}{m} = \frac{1}{2} \frac{\rho v^2 A c_D}{m} = \frac{\rho v^2}{2\beta}$$

$$x_{downrange} = r_o \theta$$
 $\rho = \rho_o e^{-\frac{h}{h_s}}$ $v_c = \sqrt{\frac{\mu}{r}}$ $h = r - r_o$

$$g = g_o \left(\frac{r_o}{r}\right)^2 \Longrightarrow g = \frac{\mu}{r^2}$$

Mercury Heat Shield Section

Gemini MOL Heat Shield

Apollo 11 Heat Shield

Orion Heat Shield

Galileo Jupiter Probe Heat Shield

Heat Shield Internal Structure

Shuttle Tile Installation

Inflatable Heat Shield (Suborbital Test)

