Course Overview/Orbital Mechanics

- Course Overview
 - Challenges of launch and entry
 - Course goals
 - Web-based Content
 - Syllabus
 - Policies
 - Project Content

ERSITYOF

 An overview of orbital mechanics at "point five past lightspeed"

> © 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Space Transportation System – NASA

Space Launch System – NASA

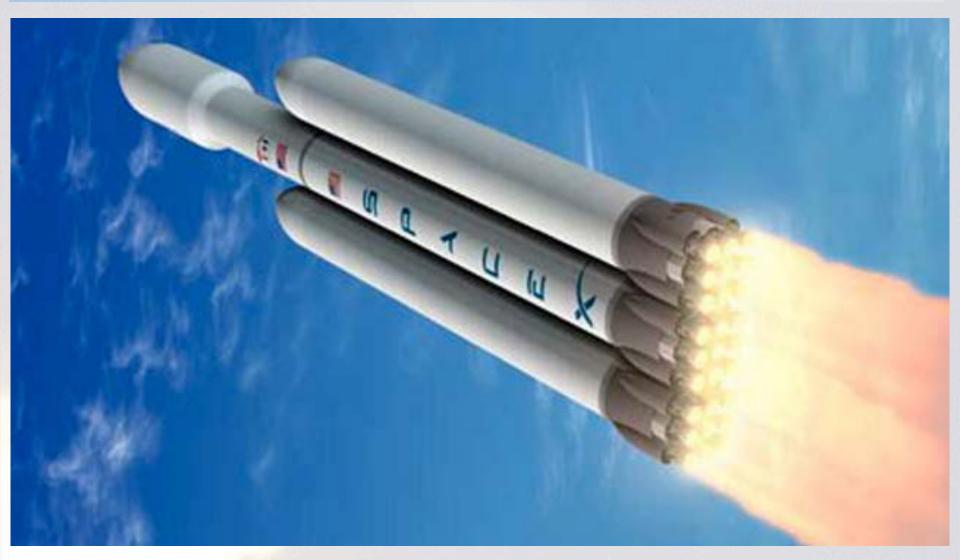
3

Antares Launch Vehicle – Orbital

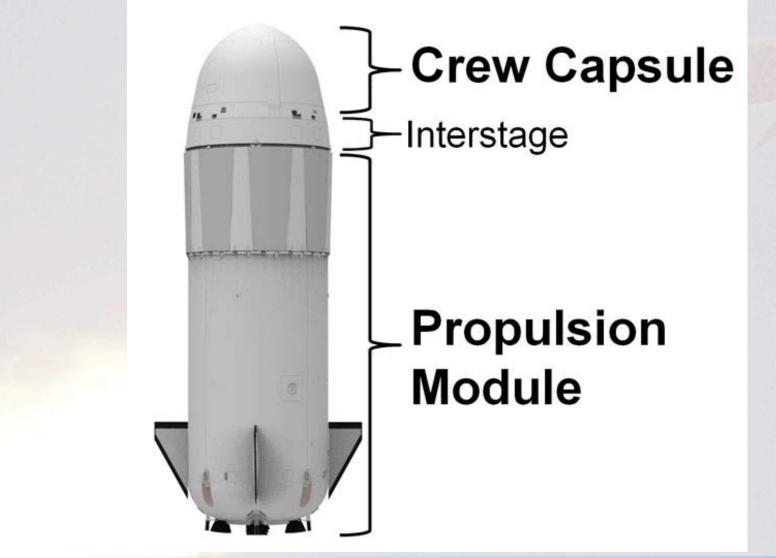
Falcon 9 v1.1 – SpaceX

5

UNIVERSITY OF MARYLAND


Liberty Launch Vehicle – ATK

UNIVERSITY OF MARYLAND


Falcon Heavy – SpaceX

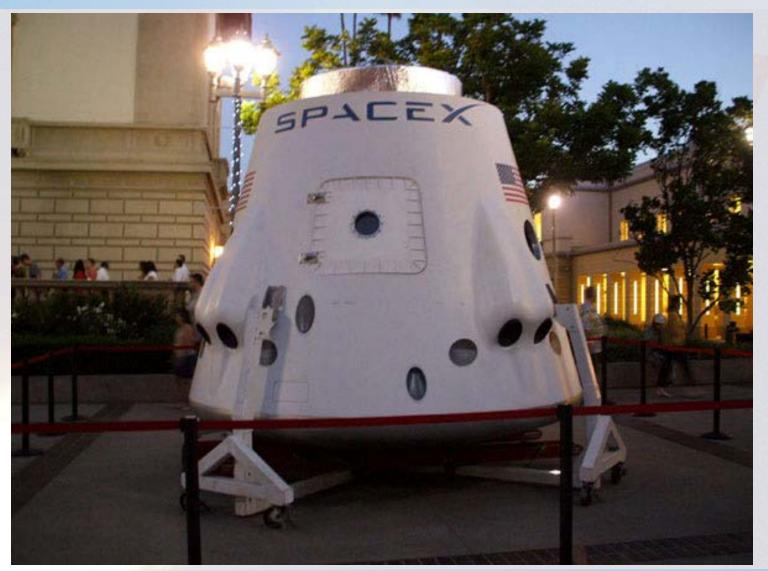
Blue Origins Launch Vehicle

Y O F

8

Dragon Cargo Spacecraft – SpaceX

UNIVERSITY OF MARYLAND


Orion Spacecraft – NASA

10

Dragon Rider Spacecraft – SpaceX

UNIVERSITY OF MARYLAND

Dream Chaser – Sierra Nevada Corp.

12

CST-100 – Boeing

13

Blue Origins Biconic Spacecraft

14

Grasshopper – SpaceX

15

Spaceship One – Rutan Aircraft Factory

16

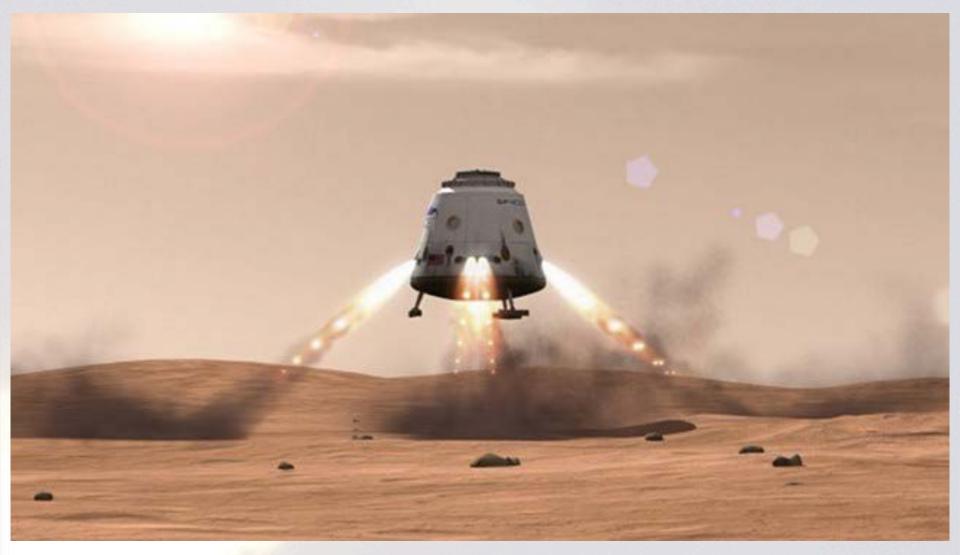
Spaceship Two - Virgin Galactic

17

Photo by MarsScientific.com and Clay Center Observatory

Lynx Suborbital Vehicle – XCOR

18



UNIVERSITY OF MARYLAND

Mars Colonial Transport – SpaceX

19

Space Launch - The Physics

• Minimum orbital altitude is ~200 km

 $\frac{Potential\ Energy}{kg\ in\ orbit} = -\frac{\mu}{r_{orbit}} + \frac{\mu}{r_E} = 1.9 \times 10^6\ \frac{J}{kg}$

• Circular orbital velocity there is 7784 m/sec

$$\frac{Kinetic\ Energy}{kg\ in\ orbit} = \frac{1}{2}\frac{\mu}{r_{orbit}^2} = 30 \times 10^6\ \frac{J}{kg}$$

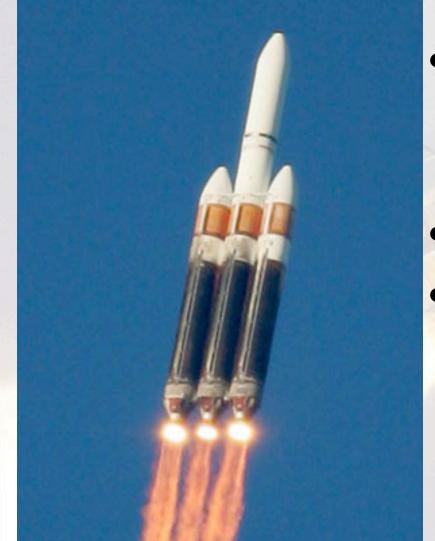
• Total energy per kg in orbit $\frac{Total \ Energy}{kg \ in \ orbit} = KE + PE = 32 \times 10^6 \ \frac{J}{kg}$

20

Theoretical Cost to Orbit

• Convert to usual energy units

 $\frac{Total \ Energy}{kg \ in \ orbit} = 32 \times 10^6 \ \frac{J}{kg} = 8.9 \ \frac{kWhrs}{kg}$


• Domestic energy costs are ~\$0.09/kWhr

Theoretical cost to orbit <u>\$0.99/kg</u>

21

Actual Cost to Orbit

ERSITYOF

22

• Delta IV Heavy - 23,000 kg to LEO - \$450 M per flight • \$19,570/kg of payload • Factor of 19,800x higher than theoretical energy costs!

What About Airplanes?

• For an aircraft in level flight,

 $\frac{\text{Weight}}{\text{Thrust}} = \frac{\text{Lift}}{\text{Drag}}, \text{ or } \frac{mg}{T} = \frac{L}{D}$ • Energy = force x distance, so $\frac{\text{Total Energy}}{\text{kg}} = \frac{\text{thrust} \times \text{distance}}{\text{mass}} = \frac{Td}{m} = \frac{gd}{L/D}$

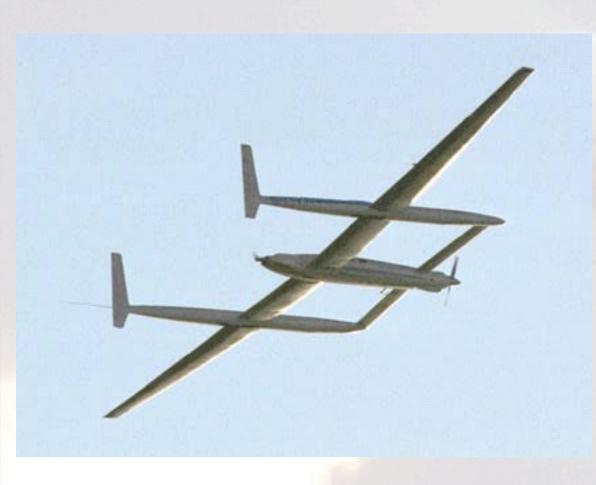
• For an airliner (L/D=25) to equal orbital energy, d=81,000 km (2 roundtrips NY-Sydney)

23

UNIVERSITY O MARYLAN

Equivalent Airline Costs?

- Average economy ticket NY-Sydney round-roundtrip (Travelocity 1/27/14) ~\$1500
- Average passenger (+ luggage) ~100 kg
- Two round trips = $\frac{30}{\text{kg}}$
 - Factor of 30x more than electrical energy costs
 - Factor of 660x less than current launch costs


• But...

you get to refuel at each stop!

24

MARYLANI

Equivalence to Air Transport

25

 81,000 km ~ twice around the world

• Voyager - one of two aircraft to ever circle the world non-stop, non-refueled -

once!

Orbital Entry - The Physics

- 32 MJ/kg dissipated by friction with atmosphere over ~8 min = 66kW/kg
- Pure graphite (carbon) high-temperature material:
 c_p=709 J/kg°K
- Orbital energy would cause temperature gain of 45,000°K!

26

• Thus proving the comment about space travel, "It's utter bilge!" (Sir Richard Wooley, Astronomer Royal of Great Britain, 1956)

The Vision

"Once you make it to low Earth orbit, you're halfway to anywhere!" - Robert A. Heinlein

27

Goals of ENAE 791

- Learn the underlying physics (orbital mechanics, flight mechanics, aerothermodynamics) which constrain and define launch and entry vehicles
- Develop the tools for preliminary design synthesis, including the fundamentals of systems analysis
- Provide an introduction to engineering economics, with a focus on the parameters affecting cost of launch and entry vehicles, such as reusability
- Examine specific challenges in the underlying design disciplines, such as thermal protection and structural dynamics
 UNIVERSITY OF

28

Contact Information

Dr. Dave Akin Space Systems Laboratory

Neutral Buoyancy Research Facility/Room 2100D 301-405-1138 dakin@ssl.umd.edu http://spacecraft.ssl.umd.edu

29

Web-based Course Content

- Data web site at http://spacecraft.ssl.umd.edu
 - Course information
 - Syllabus
 - Lecture notes
 - Problems and solutions
- Interactive web site at http://elms.umd.edu

30

- Communications for team projects (forums, wiki, blogs)
- Surveys for course feedback
- Videos of lectures

Syllabus Overview (1)

- Fundamentals of Launch and Entry Design
 - Orbital mechanics
 - Basic rocket performance
- Entry flight mechanics
 - Ballistic entry
 - Lifting entry
- Aerothermodynamics

ERSITYOF

- Thermal Protection System (TPS) analysis
- Entry, Descent, and Landing (EDL) systems

31

Syllabus Overview (2)

- Launch flight mechanics
 - Gravity turn
 - Targeted trajectories
 - Optimal trajectories
 - Airbreathing trajectories
- Launch vehicle systems
 - Propulsion systems
 - Structures and structural dynamics analysis

32

- Avionics

UNIVERSITY OF

- Payload accommodations
- Ground launch processing

Syllabus Overview (3)

- Systems Analysis
 - Cost estimation
 - Engineering economics
 - Reliability issues
 - Safety design concerns
 - Fleet resiliency
 - Multidisciplinary optimization

33

- Case studies
- Design project

Policies

- Grade Distribution
 - 25% Problems
 - 20% Midterm Exam
 - 25% Term Project
 - 30% Final Exam
- Late Policy
 - On time: Full credit
 - Before solutions:
 - After solutions:

Full credit 70% credit 20% credit

34

A Word on Homework Submissions...

- Good methods of handing in homework
 - Hard copy in class (best!)
 - Electronic or scanned copies via e-mail (please put "ENAE791" in the subject line)
- Methods that don't work so well
 - Leaving it in my mailbox (particularly in EGR)
 - Leaving it in my office

 $\mathbf{N} \mathbf{I} \mathbf{V} \mathbf{E} \mathbf{R} \mathbf{S} \mathbf{I} \mathbf{T}$

- Uncommented spreadsheets or .m files
- Handing it to me in random locations

35

– Handing it to Dr. Bowden

A Word about Homework Grading

- Homework is graded via a discrete filter
 - ✓ for homework problems which are essentially correct (10 pts)
 - $-\sqrt{-1}$ for homework with significant problems (7 pts)
 - \checkmark -- for homework with major problems (4 pts)

36

- $\checkmark +$ for homework demonstrating extra effort (12 pts)
- 0 for missing homework

ERSITY OF


• A detailed solution document is posted for each problem after the due date, which you should review to ensure you understand the techniques used

Course Overview; Orbital Mechanics

ENAE 791 - Launch and Entry Vehicle Design

Term Project - Cislunar Space Transport

37

Term Project - Top Level Requirements

- Design a system to allow the construction and support of multiple habitats in cislunar space
 - Earth-Moon L1 for deep space staging
 - Low lunar orbit for lunar surface exploration
 - Lunar distant retrograde orbit for asteroid resource recovery
- Mission models
 - Human and cargo launch and human return from cislunar space
 - Details of mission models to follow

38

Term Project

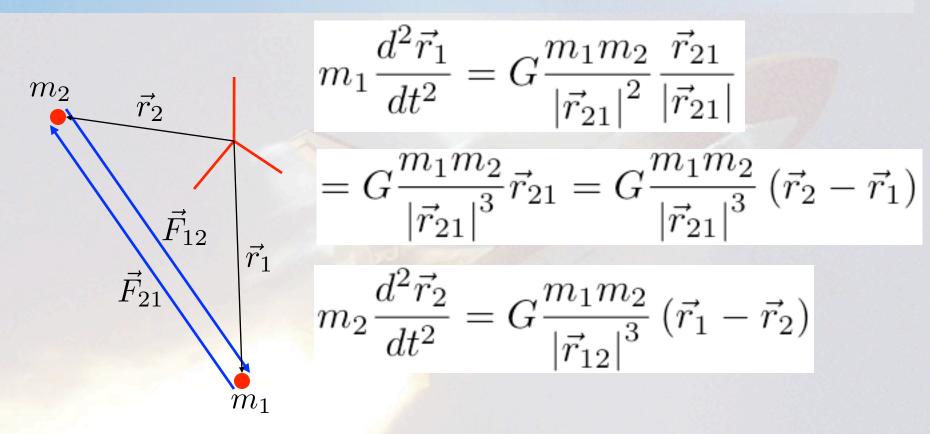
- Work as individuals or two-person teams (your choice)
- Design an architecture to support cislunar operations in the most cost effective manner possible
- All vehicles will be conceptually designed from scratch (no "catalog engineering"!)
- Parametric design parameters will be provided for human spacecraft systems not ENAE791-relevant
- Design process should proceed throughout the term
- Formal design presentations at end of term

39

Orbital Mechanics: 500 years in 40 min.

• Newton's Law of Universal Gravitation

$$F = \frac{Gm_1m_2}{r^2}$$


• Newton's First Law meets vector algebra

40

$$\overrightarrow{F} = m \overrightarrow{a}$$

Relative Motion Between Two Bodies

 $\vec{F}_{12} =$ force due to body 1 on body 2

41

Gravitational Motion

IIVERSITY OF

$$\frac{d^2\vec{r}}{dt^2} = \frac{G}{r^3} \left[m_2 \left(-\vec{r} \right) - m_1 \left(\vec{r} \right) \right] = \frac{-G}{r^3} \left(m_1 + m_2 \right) \vec{r}$$

Let
$$r = |\vec{r}_{12}| = |\vec{r}_{21}|$$
 Let $\vec{r} = \vec{r}_1 - \vec{r}_2$

Let $\mu = G(m_1 + m_2)$

$$\frac{d^2\vec{r}}{dt^2} + \mu \frac{\vec{r}}{r^3} = \vec{0}$$

"Equation of Orbit" -Orbital motion is simple harmonic motion

42

Orbital Angular Momentum

$$\vec{v} = \frac{d\vec{r}}{dt} \quad \frac{d\vec{v}}{dt} + \mu \frac{\vec{r}}{r^3} = \vec{0}$$

$$\vec{r} \times \frac{d\vec{v}}{dt} + \frac{\mu}{r^3} (\vec{r} \times \vec{r}) = \vec{0} \qquad \vec{r} \times \frac{d\vec{v}}{dt} = \vec{0}$$

$$\frac{d}{dt} (\vec{r} \times \vec{v}) = \frac{d\vec{r}}{dt} \times \vec{v} + \vec{r} \times \frac{d\vec{v}}{dt}$$

$$= \vec{v} \times \vec{v} + \vec{r} \times \frac{d\vec{v}}{dt} = \vec{r} \times \frac{d\vec{v}}{dt} = \vec{0}$$

$$\frac{d}{dt} (\vec{r} \times \vec{v}) = \vec{0} \qquad \vec{r} \times \vec{v} = constant \qquad \vec{r} \times \vec{v} = \vec{h}$$

$$\vec{h} \text{ is angular momentum vector (constant)} \implies$$

$$\vec{r} \text{ and } \vec{v} \text{ are in a constant plane}$$

$$\vec{V} \text{ MARYLAND} \qquad (constant) = 0$$

Fun and Games with Algebra

$$\frac{d\vec{v}}{dt} + \mu \frac{\vec{r}}{r^3} = \vec{0} \qquad \frac{d\vec{v}}{dt} \times \vec{h} + \frac{\mu}{r^3} \left(\vec{r} \times \vec{h}\right) = \vec{0}$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h}\right) = \frac{d\vec{v}}{dt} \times \vec{h} + \vec{v} \times \frac{d\vec{h}}{dt}$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h}\right) = -\frac{\mu}{r^3} \left(\vec{r} \times \vec{h}\right) = -\frac{\mu}{r^3} \left(\vec{r} \times \vec{r} \times \vec{v}\right)$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h}\right) = -\frac{\mu}{r^3} \left[\left(\vec{r} \cdot \vec{v}\right) \vec{r} - \left(\vec{r} \cdot \vec{r}\right) \vec{v}\right]$$

$$\vec{r} \cdot \vec{v} = rv \cos\gamma = r\frac{dr}{dt}$$

44

WIVERSITY OF MARYLAND

More Algebra, More Fun

IVERSITY OF

VIAND

45

$$\frac{d}{dt}\left(\vec{v}\times\vec{h}\right) = -\frac{\mu}{r^3}\left[r\frac{dr}{dt}\vec{r} - r^2\frac{d\vec{r}}{dt}\right]$$
$$\frac{d}{dt}\left(\frac{\vec{r}}{r}\right) = \frac{\left(r\frac{d\vec{r}}{dt} - \vec{r}\frac{dr}{dt}\right)}{r^2} = \left(\frac{1}{r}\frac{d\vec{r}}{dt} - \frac{\vec{r}}{r^2}\frac{dr}{dt}\right)$$
$$\frac{d}{dt}\left(\vec{v}\times\vec{h}\right) = -\mu\left(\frac{1}{r^2}\frac{dr}{dt}\vec{r} - \frac{1}{r}\frac{d\vec{r}}{dt}\right) = \mu\frac{d}{dt}\left(\frac{\vec{r}}{r}\right)$$
$$\frac{d}{dt}\left(\vec{v}\times\vec{h} - \mu\frac{\vec{r}}{r}\right) = \vec{0}$$

Orientation of the Orbit

$$\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r} = \text{constant}$$
 $\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r} = \mu \vec{e}$
 $\vec{e} \equiv \text{eccentricity vector, in orbital plane}$

 \vec{e} points in the direction of periapsis

$$\vec{r} \cdot \vec{v} \times \vec{h} - \vec{r} \cdot \mu \frac{\vec{r}}{r} = \mu \left(\vec{r} \cdot \vec{e} \right)$$
$$\vec{r} \times \vec{v} \cdot \vec{h} - \mu \frac{\vec{r} \cdot \vec{r}}{r} = \mu re \cos \theta$$
$$\vec{h} \cdot \vec{h} - \mu \frac{r^2}{r} = \mu re \cos \theta$$

IVERSITY OFCourse Overview; Orbital MechanicsARYLAND4646ENAE 791 - Launch and Entry Vehicle Design

Position in Orbit

$$h^{2} - \mu r = \mu r e \cos \theta$$
$$r = \frac{h^{2}/\mu}{1 + e \cos \theta}$$

 θ = true anomaly: angular travel from perigee passage

at
$$\theta = \pm \frac{\pi}{2}$$
; $\cos \theta = 0$; $r = p \equiv h^2/\mu$

47

Relating Velocity and Orbital Elements

$$\mu \vec{e} = \vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r}$$

$$\mu \vec{e} \cdot \mu \vec{e} = \vec{v} \times \vec{h} \cdot \vec{v} \times \vec{h} - 2\mu \left(\vec{v} \times \vec{h} \right) \cdot \frac{\vec{r}}{r} + \mu^2 \left(\frac{\vec{r}}{r} \cdot \frac{\vec{r}}{r} \right)$$

$$\mu^2 e^2 = v^2 h^2 - 2\mu \frac{h^2}{r} + \mu^2$$

$$e^2 = \frac{v^2}{\mu}p - 2\frac{p}{r} + 1$$

48

ERSITY OF

Vis-Viva Equation

$$p \equiv a(1 - e^2) = \frac{1 - e^2}{\frac{2}{r} - \frac{v^2}{\mu}}$$
$$a = \left(\frac{2}{r} - \frac{v^2}{\mu}\right)^{-1}$$

$$v^2 = \mu\left(\frac{2}{r} - \frac{1}{a}\right)$$

<--Vis-Viva Equation

$$\frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$$

49

WIVERSITY OF MARYLAND

Energy in Orbit

• Kinetic Energy

$$K.E. = \frac{1}{2}mv^2 \Longrightarrow \frac{K.E.}{m} = \frac{v^2}{2}$$

• Potential Energy

$$P.E. = -\frac{m\mu}{r} \Longrightarrow \frac{P.E.}{m} = -\frac{\mu}{r}$$

• Total Energy

Const. =
$$\frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$$
 <--Vis-Viva Equation

IVERSITY OF CONTRACTOR ARYLAND 50 ENAE 791

Suborbital Tourism - Spaceship Two

51

How Close are we to Space Tourism?

• Energy for 100 km vertical climb

$$-\frac{\mu}{r_E + 100 \ km} + \frac{\mu}{r_E} = 0.965 \ \frac{km^2}{sec^2} = 0.965 \ \frac{MJ}{kg}$$

• Energy for 200 km circular orbit

 $-\frac{\mu}{2(r_E+200\ km)} + \frac{\mu}{r_E} = 32.2\ \frac{km^2}{sec^2} = 32.2\ \frac{MJ}{kg}$

• Energy difference is a factor of 33!

52

IVERSITY OF

Implications of Vis-Viva

• Circular orbit (r=a)

$$v_{circular} = \sqrt{\frac{\mu}{r}}$$

• Parabolic escape orbit (a tends to infinity)

53

$$v_{escape} = \sqrt{\frac{2\mu}{r}}$$

• Relationship between circular and parabolic orbits

$$v_{escape} = \sqrt{2} v_{circular}$$

Some Useful Constants

- Gravitation constant $\mu = GM$
 - Earth: 398,604 km³/sec²
 - Moon: 4667.9 km³/sec²
 - Mars: 42,970 km³/sec²
 - Sun: 1.327x10¹¹ km³/sec²
- Planetary radii
 - $r_{Earth} = 6378 \text{ km}$
 - $r_{Moon} = 1738 \text{ km}$

$$- r_{Mars} = 3393 \text{ km}$$

ERSITYOF

54

