Rocket Performance

- Parallel staging
- Modular staging
- Standard atmospheres
- Orbital decay due to drag
- Straight-line (no gravity) entry based on atmospheric density

© 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Parallel Staging

- Multiple dissimilar engines burning simultaneously
- Frequently a result of upgrades to operational systems
- General case requires "brute force" numerical performance analysis

Parallel-Staging Rocket Equation

• Momentum at time t:

$$M = mv$$

 Momentum at time t+Δt: (subscript "b"=boosters; "c"=core vehicle)

$$M = (m - \Delta m_b - \Delta m_c)(v + \Delta v) + \Delta m_b(v - V_{e,b}) + \Delta m_c(v - V_{e,c})$$

• Assume thrust (and mass flow rates) constant

Parallel-Staging Rocket Equation

• Rocket equation during booster burn

$$\Delta V = -\bar{V}_e \ln\left(\frac{m_{final}}{m_{initial}}\right) = -\bar{V}_e \ln\left(\frac{m_{in,b} + m_{in,c} + \chi m_{pr,c} + m_{0,2}}{m_{in,b} + m_{pr,b} + m_{in,c} + m_{pr,c} + m_{0,2}}\right)$$

where χ = fraction of core propellant remaining after booster burnout, and where

$$\bar{V}_{e} = \frac{V_{e,b}\dot{m}_{b} + V_{e,c}\dot{m}_{c}}{\dot{m}_{b} + \dot{m}_{c}} = \frac{V_{e,b}m_{pr,b} + V_{e,c}(1-\chi)m_{pr,c}}{m_{pr,b} + (1-\chi)m_{pr,c}}$$

Analyzing Parallel-Staging Performance

Parallel stages break down into pseudo-serial stages:

• Stage "0" (boosters and core)

$$\Delta V_0 = -\bar{V}_e \ln \left(\frac{m_{in,b} + m_{in,c} + \chi m_{pr,c} + m_{0,2}}{m_{in,b} + m_{pr,b} + m_{in,c} + m_{pr,c} + m_{0,2}} \right)$$

• Stage "1" (core alone)

$$\Delta V_1 = -V_{e,c} \ln \left(\frac{m_{in,c} + m_{0,2}}{m_{in,c} + \chi m_{pr,c} + m_{0,2}} \right)$$

• Subsequent stages are as before

Parallel Staging Example: Space Shuttle

- 2 x solid rocket boosters (data below for single SRB)
 - Gross mass 589,670 kg
 - Empty mass 86,183 kg
 - Ve 2636 m/sec
 - Burn time 124 sec
- External tank (space shuttle main engines)
 - Gross mass 750,975 kg
 - Empty mass 29,930 kg
 - Ve 4459 m/sec
 - Burn time 480 sec

IVERSITY OF

• "Payload" (orbiter + P/L) 125,000 kg

Shuttle Parallel Staging Example

 $V_{e,b} = 2636 \frac{m}{sec}$ $V_{e,c} = 4459 \frac{m}{sec}$ $\chi = \frac{480 - 124}{480} = 0.7417$ $\bar{V}_e = \frac{2636(1,007,000) + 4459(721,000)(1 - .7417)}{1,007,000 + 721,000(1 - .7417)} = 2921 \frac{m}{sec}$ $\Delta V_0 = -2921 \ln \frac{862,000}{3,062,000} = 3702 \frac{m}{sec}$ $\Delta V_1 = -4459 \ln \frac{154,900}{689,700} = 6659 \frac{m}{sec}$ $\Delta V_{tot} = 10,360 \frac{m}{sec}$ IVERSITY OF

Ballistic Entry

Modular Staging

- Use identical modules to form multiple stages
- Have to cluster modules on lower stages to make up for nonideal ΔV distributions
- Advantageous from production and development cost standpoints

UNIVERSITY OF MARYLAND

8

Module Analysis

- All modules have the same inert mass and propellant mass
- Because δ varies with payload mass, not all modules have the same $\delta!$
- Use module-oriented parameters

$$\varepsilon \equiv \frac{m_{in}}{m_{in} + m_{pr}} \qquad \sigma \equiv \frac{m_{in}}{m_{pr}}$$

• Conversions
$$\varepsilon = \frac{\delta}{1 - \lambda} \qquad \sigma = \frac{\delta}{1 - \delta - \lambda}$$

9

Rocket Equation for Modular Boosters

• Assuming n modules in stage 1,

$$r_{1} = \frac{n(m_{in}) + m_{o2}}{n(m_{in} + m_{pr}) + m_{o2}} = \frac{n\varepsilon + \frac{m_{o2}}{m_{mod}}}{n + \frac{m_{o2}}{m_{mod}}}$$

• If all 3 stages use same modules, n_i for stage j,

$$r_{1} = \frac{n_{1}\varepsilon + n_{2} + n_{3} + \rho_{pl}}{n_{1} + n_{2} + n_{3} + \rho_{pl}}$$

where $\rho_{pl} \equiv \frac{m_{pl}}{m_{mod}}; m_{mod} = m_{in} + m_{pr}$

10

Example: Conestoga 1620 (EER)

- Small launch vehicle (1 flight, 1 failure)
- Payload 900 kg
- Module gross mass 11,400 kg
- Module empty mass 1,400 kg
- Exhaust velocity 2754 m/sec
- Staging pattern
 - 1st stage <mark>4 modul</mark>es
 - 2nd stage 2 modules
 - 3rd stage 1 module
 - 4th stage Star 48V (gross mass 2200 kg,

empty mass 140 kg, Ve 2842 m/sec)

Conestoga 1620 Performance

- 4th stage ΔV
- $\Delta V_4 = -V_{e4} \ln \frac{m_{f4}}{m_{o4}} = -2842 \ln \frac{900 + 140}{900 + 2200} = 3104 \frac{\text{m}}{\text{sec}}$
 - Treat like three-stage modular vehicle; M_{pl} =3100 kg

$$\epsilon = \frac{m_{in}}{m_{mod}} = \frac{1400}{11400} = 0.1228$$
$$\rho_{pl} = \frac{m_{pl}}{m_{mod}} = \frac{3100}{11400} = 0.2719$$

$$n_1 = 4; \ n_2 = 2; \ n_3 = 1$$

Constellation 1620 Performance (cont.)

$$r_{1} = \frac{n_{1}\epsilon + n_{2} + n_{3} + \rho_{pl}}{n_{1} + n_{2} + n_{3} + \rho_{pl}} = \frac{4 \times 0.1228 + 2 + 1 + 0.2719}{4 + 2 + 1 + 0.2719} = 0.5175$$

$$r_{2} = \frac{n_{2}\epsilon + n_{3} + \rho_{pl}}{n_{2} + n_{3} + \rho_{pl}} = \frac{2 \times 0.1228 + 1 + 0.2719}{2 + 1 + 0.2719} = 0.4638$$

$$r_{3} = \frac{n_{3}\epsilon + \rho_{pl}}{n_{3} + \rho_{pl}} = \frac{1 \times 0.1228 + 0.2719}{1 + 0.2719} = 0.3103$$

$$V_{1} = 1814 \frac{m}{sec}; V_{2} = 2116 \frac{m}{sec}$$

$$V_{3} = 3223 \frac{m}{sec}; V_{4} = 3104 \frac{m}{sec}$$

$$V_{total} = 10, 257 \frac{m}{sec}$$
Ballistic Entry

13

MARYLAND

Ballistic Entry

Discussion about Modular Vehicles

- Modularity has several advantages
 - Saves money (smaller modules cost less to develop)
 - Saves money (larger production run = lower cost/ module)
 - Allows resizing launch vehicles to match payloads
- Trick is to optimize number of stages, number of modules/stage to minimize total number of modules
- Generally close to optimum by doubling number of modules at each lower stage
- Have to worry about packing factors, complexity
 UNIVERSITY OF
 MARYLAND
 14
 ENAE 791 Launch and Entry Vehicle Design

OTRAG - 1977-1983

15

UNIVERSITY OF MARYLAND

Modular Example

- Let's build a launch vehicle out of seven Space Shuttle Solid Rocket Boosters
 - $M_{in} = 86,180 \text{ kg}$
 - $M_{pr} = 503,500 \text{ kg}$

$$\varepsilon \equiv \frac{m_{in}}{m_{in} + m_{pr}} = 0.1461 \quad \sigma \equiv \frac{m_{in}}{m_{pr}} = 0.1711$$

• Look at possible approaches to sequential firing

16

Modular Sequencing - SRB Example

- Assume no payload
- All seven firing at once ΔV_{tot} =5138 m/sec
- 3-3-1 sequence ΔV_{tot} =9087 m/sec
- 4-2-1 sequence $\Delta V_{tot} = 9175$ m/sec
- 2-2-2-1 sequence ΔV_{tot} =9250 m/sec
- 2-1-1-1-1 sequence $\Delta V_{tot} = 9408 \text{ m/sec}$
- 1-1-1-1-1-1 sequence $\Delta V_{tot} = 9418 \text{ m/sec}$

17

• Sequence limited by need to balance thrust laterally

Ballistic Entry

Atmospheric Density with Altitude

ENAE 791 - Launch and Entry Vehicle Design

18

Energy Loss Due to Atmospheric Drag

Drag
$$D = \frac{1}{2}\rho v^2 A c_D$$

Drag acceleration $a_d = \frac{D}{m} = \frac{\rho v^2}{2} \frac{A c_D}{m}$
 $\beta \equiv \frac{m}{c_D A}$ <== Ballistic Coefficient
 $a_d = \frac{\rho v^2}{2\beta}$
orbital energy $\equiv E = -\frac{\mu}{2a}$
 $\frac{dE}{dt} = \frac{\mu}{2a^2} \frac{da}{dt}$
ERSITY OF Ballistic Energy

Ballistic Entry ENAE 791 - Launch and Entry Vehicle Design

19

Energy Loss Due to Atmospheric Drag

Since drag is highest at perigee, the first effect of atmospheric drag is to circularize the orbit (high perigee drag lowers apogee)

$$\frac{dE_{drag}}{dt} = a_d v$$

$$\frac{dE_{drag}}{dt} = -\sqrt{\frac{\mu}{a}}\frac{\rho}{2\beta}\frac{\mu}{a} = -\left(\frac{\mu}{a}\right)^{\frac{3}{2}}\frac{\rho}{2\beta}$$

20

Derivation of Orbital Decay Due to Drag

Set orbital energy variation equal to energy lost by drag

21

R SITY OF

$$\frac{\mu}{2a^2}\frac{da}{dt} = -\frac{\rho}{2\beta}\left(\frac{\mu}{a}\right)^{\frac{3}{2}}$$
$$\frac{da}{dt} = -\frac{\rho}{\beta}\sqrt{\mu a}$$
$$\rho = \rho_o e^{-\frac{h}{h_s}} \qquad a = h + r_E \Longrightarrow \frac{da}{dt} = \frac{dh}{dt}$$
$$\frac{dh}{dt} = -\frac{\sqrt{\mu\left(h + r_E\right)}}{\beta}\rho_o e^{-\frac{h}{h_s}}$$

Derivation of Orbital Decay (2)

This is a separable differential equation...

22

MARYLAN

Derivation of Orbital Decay (3)

$$\frac{h_s}{\sqrt{r_E}} \left(e^{\frac{h}{h_s}} - e^{\frac{h_o}{h_s}} \right) = -\frac{\sqrt{\mu}}{\beta} \rho_o \left(t - t_o \right)$$
$$e^{\frac{h}{h_s}} - e^{\frac{h_o}{h_s}} = -\frac{\sqrt{\mu r_E}}{h_s \beta} \rho_o \left(t - t_o \right)$$

$$h(t) = h_s \ln \left[e^{\frac{h_o}{h_s}} - \frac{\sqrt{\mu r_E}}{h_s \beta} \rho_o \left(t - t_o \right) \right]$$

Note that some variables typically use km, and others are in meters - you have to make sure unit conversions are done properly to make this work out correctly! **Ballistic Entry ENAE 791 - Launch and Entry Vehicle Design**

23

Orbit Decay from Atmospheric Drag

Time Until Orbital Decay

$$e^{\frac{h}{h_s}} - e^{\frac{h_o}{h_s}} = -\frac{\sqrt{\mu r_E}}{h_s \beta} \rho_o \left(t - t_o\right)$$

To find the time remaining $(t_0=0)$ until the orbit reaches any given "critical" altitude, some algebra gives

$$t(h_{crit}) = \frac{h_s\beta}{\sqrt{\mu r_E}\rho_o} \left(e^{\frac{h_o}{h_s}} - e^{\frac{h_{crit}}{h_s}}\right)$$

$$t(h_{crit}) \propto \beta$$

25

Decay Time to r=120 km

26

Ballistic Entry (no lift)

v,ss = distance along the flight path $\frac{dv}{dt} = -g\sin\gamma - \frac{D}{m}$ horizontal $\frac{dv}{dt} = \frac{dv}{ds}\frac{ds}{dt} = V\frac{dv}{ds} = \frac{1}{2}\frac{d(v^2)}{ds}$ $\frac{1}{2}\frac{d(v^2)}{ds} = -g\sin\gamma - \frac{D}{m} \qquad \text{Drag } D \equiv \frac{1}{2}\rho v^2 A c_D$ $\frac{1}{2}\frac{d(v^2)}{ds} = -g\sin\gamma - \frac{\rho v^2}{2m}Ac_D \qquad \underbrace{\frac{ds}{\gamma}}_{dh} dh \\ \frac{\sin\gamma}{2}\frac{d(v^2)}{dh} = -g\sin\gamma - \frac{\rho v^2}{2m}Ac_D \qquad ds = \frac{dh}{\sin\gamma}$

27

WNIVERSITY OF MARYLAND

Ballistic Entry (2)

NIVERSITY OF

Exponential atmosphere $\Rightarrow \rho = \rho_o e^{-\frac{h}{h_s}}$

$$\frac{d\rho}{\rho_o} = e^{-\frac{h}{h_s}} \left(\frac{-dh}{h_s}\right) = \frac{\rho_o e^{-\frac{h}{h_s}}}{\rho_o} \left(\frac{-dh}{h_s}\right) = \frac{\rho}{\rho_o} \left(\frac{-dh}{h_s}\right)$$
$$dh = \frac{-h_s}{\rho} d\rho$$
$$\frac{\sin\gamma}{2} \frac{d(v^2)}{dh} = -g\sin\gamma - \frac{\rho v^2}{2m} Ac_D$$
$$\frac{\sin\gamma}{2} \frac{d(v^2)}{d\rho} \left(\frac{-\rho}{h_s}\right) = -g\sin\gamma - \frac{\rho v^2}{2} \frac{Ac_D}{m}$$
$$\frac{d(v^2)}{d\rho} = \frac{2gh_s}{\rho} + \frac{h_s v^2}{\sin\gamma} \frac{Ac_D}{m}$$

28

Ballistic Entry (3)

IVERSITY OF

Let
$$\beta \equiv \frac{m}{c_D A} \Rightarrow$$
 Ballistic Coefficient
$$\frac{d(v^2)}{d\rho} - \frac{h_s}{\beta \sin \gamma} v^2 = \frac{2gh_s}{\rho}$$

Assume $mg \ll D$ to get homogeneous ODE

$$\frac{d(v^2)}{d\rho} - \frac{h_s}{\beta \sin \gamma} v^2 = 0 \qquad \qquad \frac{d(v^2)}{v^2} = \frac{h_s}{\beta \sin \gamma} d\rho$$
Use (v^2) as integration variable
$$\int_{v_e}^{v} \frac{d(v^2)}{v^2} = \frac{h_s}{\beta \sin \gamma} \int_{0}^{\rho} d\rho \qquad v_e = \text{velocity at entry}$$

29

Ballistic Entry (4)

Note that the effect of ignoring gravity is that there is no force perpendicular to velocity vector \Rightarrow constant flight path angle γ \Rightarrow straight line trajectories

$$n \frac{v^2}{v_e^2} = 2 \ln \frac{v}{v_e} = \frac{h_s \rho}{\beta \sin \gamma}$$
$$\frac{v}{v_e} = \exp\left(\frac{h_s \rho}{2\beta \sin \gamma}\right)$$

$$\frac{v}{v_e} = \exp\left(\frac{h_s \rho_o}{2\beta \sin \gamma} \frac{\rho}{\rho_o}\right)$$

30

Check units: $\left(\frac{m\frac{kg}{m^3}}{\frac{kg}{m^2}}\right)$

Earth Entry, $\gamma = -60^{\circ}$

NIVERSITY OF

Y L A N D

31

What About Peak Deceleration?

$$n \equiv \frac{dv}{dt} = -\frac{\rho v^2}{2\beta}$$

To find n_{max} , set $\frac{d}{dt} \left(\frac{dv}{dt}\right) = \frac{d^2v}{dt^2} = 0$
 $\frac{d^2v}{dt^2} = -\frac{1}{2\beta} \left(2\rho t \frac{dv}{dt} + v^2 \frac{d\rho}{dt}\right) = 0$
 $\frac{d^2v}{dt^2} = -\frac{1}{2\beta} \left(-\frac{2\rho^2 v^3}{2\beta} + v^2 \frac{d\rho}{dt}\right) = 0$
 $\frac{\rho^2 v^3}{\beta} = v^2 \frac{d\rho}{dt}$ $\rho^2 v = \beta \frac{d\rho}{dt}$

32

WIVERSITY OF MARYLAND

Peak Deceleration (2)

From exponential atmosphere,

$$\frac{d\rho}{dt} = -\frac{\rho_o}{h_s} e^{-\frac{h}{h_s}} \frac{dh}{dt} = -\frac{\rho}{h_s} \frac{dh}{dt}$$

From geometry, $\frac{dh}{dt} = v \sin \gamma$

$$\frac{d\rho}{dt} = -\frac{\rho v}{h_s} \sin \gamma \qquad \rho^2 v = \beta \frac{d\rho}{dt}$$
$$\rho^2 v = \beta \left(-\frac{\rho v}{h_s} \sin \gamma \right)$$

Remember that this refers to the conditions at max deceleration

$$\rho_{n_{max}} = -\frac{\beta}{h_s} \sin \gamma$$

33

Critical B for Deceleration Before Impact

At surface, $\rho = \rho_o$

 $\beta_{crit} = -\frac{\rho_o h_s}{\sin \gamma}$ \Leftarrow Value of β at which vehicle hits ground at point of maximum deceleration

How large is maximum deceleration?

$$\frac{dv}{dt} = \frac{\rho v^2}{2\beta} \qquad \Rightarrow \left|\frac{dv}{dt}\right|_{max} = \frac{\rho_{n_{max}}v^2}{2\beta}$$
$$\left|\frac{dv}{dt}\right|_{max} = \frac{v^2}{2\beta} \left(-\frac{\beta}{h_s}\sin\gamma\right) = -\frac{1}{2}\frac{v^2}{h_s}\sin\gamma$$

Note that this value of v is actually $v_{n_{max}}$

34

Peak Deceleration (3)

From page 14,

$$\frac{v}{v_e} = \exp\left(\frac{h_s\rho}{2\beta\sin\gamma}\right)$$

$$\frac{v_{n_{max}}}{v_e} = \exp\left[\frac{h_s}{2\beta\sin\gamma}\left(-\frac{\beta}{h_s}\sin\gamma\right)\right] = e^{-\frac{1}{2}}$$

$$\left|\frac{dv}{dt}\right|_{max} = -\frac{1}{2}\frac{\left(v_e e^{-\frac{1}{2}}\right)^2}{h_s}\sin\gamma = -\frac{v_e^2\sin\gamma}{2h_s e}$$

Note that the velocity at which maximum deceleration occurs is always a fixed fraction of the entry velocity - it doesn't depend on ballistic coefficient, flight path angle, or anything else! Also, the magnitude of the maximum deceleration is not a function of ballistic coefficient - it is dependent on the entry trajectory (v_e and γ) but not spacecraft parameters (i.e., ballistic coefficient). IVERSITY OF **Ballistic Entry ENAE 791 - Launch and Entry Vehicle Design**

35

Terminal Velocity

Full form of ODE -

$$\frac{d\left(v^2\right)}{d\rho} - \frac{h_s}{\beta\sin\gamma}v^2 = \frac{2gh_s}{\rho}$$

At terminal velocity, $v = \text{constant} \equiv v_T$

$$-\frac{h_s}{\beta \sin \gamma} v_T^2 = \frac{2gh_s}{\rho}$$

$$v_T^2 = \sqrt{-\frac{2g\beta\sin\gamma}{\rho}}$$

36

"Cannon Ball" $\gamma = -90^{\circ}$ Ballistic Entry

6.75" diameter sphere, $c_D=0.2$, $V_E=6000$ m/sec

	Iron	Aluminum	Balsa Wood
Weight	40 lb	15.6 lb	14.5 oz
β (kg/m²)	3938	1532	89
ρ _{md} (kg/m³)	0.555	0.216	0.0125
h _{md} (m)	5600	12,300	32,500
V _{impact} (m/s)	1998	355	0*
V _{term} (m/sec)	251	156	38

*Artifact of assumption that $D \gg mg$

37

Atmospheric Density with Altitude

Pressure=the integral of the atmospheric density in the column above the reference area

$$p = f(h) \qquad P_o = \int_o^\infty \rho g dh = \rho_o g \int_o^\infty e^{-\frac{h}{h_s}} dh = -\rho_o g h_s \left[e^{-\frac{h}{h_s}} \right]_o^\infty$$
$$= -\rho_o g h_s \left[0 - 1 \right]$$

$$P_o = \rho_o g h_s$$

Earth:
$$\rho_o = 1.226 \frac{kg}{m^3}; h_s = 7524m;$$

38

 ρ_o, P_o

R S I T Y O F

 $P_o(calc) = 90,400 \ Pa; \ P_o(act) = 101,300 \ Pa$

Nondimensional Ballistic Coefficient

$$\frac{v}{v_e} = \exp\left(\frac{h_s \rho_o}{2\beta \sin \gamma} \frac{\rho}{\rho_o}\right) = \exp\left(\frac{P_o}{2\beta g \sin \gamma} \frac{\rho}{\rho_o}\right)$$

Let $\hat{\beta} \equiv \frac{\beta}{\rho_o h_s} = \frac{\beta g}{P_o}$ (Nondimensional form of ballistic coefficient) Note that we are using the estimated value of $P_o = \rho_o g h_s$, not the actual surface pressure.

$$\frac{v}{v_e} = \exp\left(\frac{1}{2\widehat{\beta}\sin\gamma}\frac{\rho}{\rho_o}\right)$$

$$\beta_{crit} = -\frac{\rho_o h_s}{\sin \gamma} \qquad \qquad \widehat{\beta}_{crit} = -\frac{1}{\sin \gamma}$$

39

Entry Velocity Trends, γ=-90°

NIVERSITY OF

40