Rocket Performance

o Parallel staging

e Modular staging

e Standard atmospheres

e Orbital decay due to drag

o Straight-line (no gravity) entry based on
atmospheric density
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Paralle] Staging

o Multiple dissimilar engines
burning simultaneously

o Frequently a result of
upgrades to operational
systems

e General case requires

(€4 » .
brute force” numerical

performance analysis
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Parallel-Staging Rocket Equation

¢ Momentum at time t:
M = mv
¢ Momentum at time t+At:
(subscript “b”=boosters; “c’=core vehicle)

M = (m — Amy — Am,)(v + Av)
+Amp(v — Vep) + Ame(v — Ve o)

o Assume thrust (and mass flow rates) constant
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Parallel-Staging Rocket Equation

e Rocket equation during booster burn

AV =V, In Bzt ) = _V, In (- Rigat minetumonetmos )

Minitial Min b+ Mpr b+Min,ctMpr c+Mo,2

where X= fraction of core propellant remaining after
booster burnout, and where

‘7 Ve,bmb‘I'Ve,cmc i Ve,bmprab—I—Ve,C(l_X)mpr’c
(&

mb‘|—mc e mp?“,b_I_(]-_X)mpT,C
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Analyzing Parallel-Staging Performance

Parallel stages break down into pseudo-serial stages:

o Stage “0” (boosters and core)

AV() Al _Ve I ( Min, btTMin ctXMpr ct+Mo,2 )

min,b+mpr,b+min,c+mpr,c‘|‘m0,2

o Stage “1” (core alone)

Min,ctTXMpr,cT1M0,2

Avl _ _Ve,c 111 ( Min, cTMO,2 )

o Subsequent stages are as before
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Parallel Staging Example: Space Shuttle

o 2 xsolid rocket boosters (data below for single SRB)
— Gross mass 589,670 kg
— Empty mass 86,183 kg
— Ve 2636 m/sec

— Burn time 124 sec

o External tank (space shuttle main engines)
— Gross mass 750,975 kg
— Empty mass 29,930 kg
— Ve 4459 m/sec
— Burn time 480 sec

o “Payload” (orbiter + P/L) 125,000 kg
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Shuttle Parallel Staging Example

Vi = Ol V, . s usis
SecC SeC

480 — 124
— _ 0.7417
X 480

= 2636(1, 007, 000) + 4459(721,000)(1 — .7417) oo A
e 1,007,000 4 721,000(1 — .7417) g sec

862,000 m
9 p, il
3,062, 000 e sec

154, 900 m
689,700 202 e

AV() = —29211n

AV) = —4459 In

N = 10560
SEC
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Modular Staging

e Use identical modules to form
multiple stages

e Have to cluster modules on
lower stages to make up for
nonideal AV distributions

e Advantageous from
production and development
cost standpoints
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Module Analysis

o All modules have the same inert mass and propellant
mass

e Because 0 varies with payload mass, not all modules
have the same 0!

e Use module-oriented parameters

G ==
e Conversions o =4 0 s 0
1 — A 1—0— A
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Rocket Equation for Modular Boosters

e Assuming n modules in stage 1,

I mMo2

N n(Mip) + Me2 y R o
T N min M) T gz | ot a2
in pr ) Mo od

o Ifall 3 stages use same modules, n, for stage j,

ni€ + na + N3 + Ppi

T =
ni + Ng + N3 + Ppi
where R
Ppl = ; Mimod = Miin T Mpyr
mod
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Example: Conestoga 1620 (EER)

Small launch vehicle (1 flight, 1 failure)
Payload 900 kg

Module gross mass 11,400 kg

Module empty mass 1,400 kg

Exhaust velocity 2754 m/sec

Staging pattern
— 1st stage - 4 modules

— 2nd stage - 2 modules
— 3rd stage - 1 module

— 4th stage - Star 48V (gross mass 2200 kg,

empty mass 140 kg, V. 2842 m/sec)
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Conestoga 1620 Performance
o 4th stage AV

mf4 900 13 140 1m
AV, = -V, = —28421 = 3104 —
§ S Mos B 900 + 2200 sec
o Treat like three-stage modular vehicle; M,=3100 kg
|
Myl 3100
Pl = T 11400

n1:4; 712:2; TL3:1
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Constellation 1620 Performance (cont.)

N1€ + N2 + N3 + Ppi 4 x0.1228+ 2+ 1+ 0.2719

rl:n1—|—n2—|—n3—|—ppl == 4+2+1+02719 — 0.5175
2 %X 0.1226 4 1 -9
R TN L — 0.4638
No + N3 + Ppl 2= e 719
nse + 1 x 0.1228 + 0.2719
S O + —~ 0.3103
Vi =1814 —; Vo = 2116 —
SEC SEC
1m
Va = 3203 At
SEC = SEC
Viotar = 10,257 —
| SEC
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Discussion about Modular Vehicles

e Modularity has several advantages
— Saves money (smaller modules cost less to develop)

— Saves money (larger production run = lower cost/
module)

— Allows resizing launch vehicles to match payloads

o Trick is to optimize number of stages, number of
modules/stage to minimize total number of modules

o Generally close to optimum by doubling number of
modules at each lower stage

e Have to worry about packing factors, complexity
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OTRAG - 1977-1983
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Modular Example

o Let’s build a launch vehicle out of seven Space

Shuttle Solid Rocket Boosters
s Min=86,180 kg
— M:=503,500 kg

ey b NN —
My T Mopyr My

e Look at possible approaches to sequential firing
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Modular Sequencing - SRB Example

e Assume no payload

o Allseven firing at once - AV:=5138 m/sec
e 3-3-1sequence - AV,:=9087 m/sec

o 4-2-1sequence - AV:=9175 m/sec

o 2-2-2-1 sequence - AV,:=9250 m/sec

o 2-1-1-1-1-1 sequence - AV ,:=9408 m/sec

o 1-1-1-1-1-1-1 sequence - AV,:=9418 m/sec

e Sequence limited by need to balance thrust laterally
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Atmospheric Density with Altitude
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Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994
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Energy Loss Due to Atmosphetric Drag

1
Drag D = ipvacD
D 2 A
Drag acceleration ag = — = PR
m % i)
T
b= <== Ballistic Coefficient
C DA
pv°
R
23 >
orbital energy = F = — —
2a
dt;.  u da
e Gl
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Energy Loss Due to Atmosphetric Drag

Since drag is highest at perigee, the first effect of atmospheric drag is
to circularize the orbit (high perigee drag lowers apogee)

dEdrag
— aA4v
dt 5

el

) dt 20 \ a

dEdrag:_ /L/O:LL__<H)%£

dt \ a 28 a e
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Derivation of Orbital Decay Due to Drag

Set orbital energy variation equal to energy lost by drag

(V][VV

poda p (u)

202 dt 28 \a
da p
d
— da
P = poe& s a:h+TE:>£:E
dh  Jplh+re)
ar 3 PoC s
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Derivation of Orbital Decay (2)

'This is a separable differential equation...

I
e’ g1, — — VI

h\/TE+h b,

1 {
/ BT <L
h, VTE + h b te

Assume \/TE +h ~ /rg forrg > h

\/@ ehsdh— \gﬁpo (t — o)

/@}/ UNIVERSITY OF Ballistic Entry
{

e ) M ARYL AND 2 ENAE 791 - Launch and Entry Vehicle Design




Derivation of Orbital Decay (3)

hS RAZN Ok
(ehhs —623> —— \/ﬂpO (t—to)
VTE

5
o T
6% _62_8 = hluﬁEpo (t_to)

B(t) = holn |efs = Y22 5 ¢,)

hs o

Note that some variables typically use km, and others are in

meters - you have to make sure unit conversions are done

properly to make this work out correctly!
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Orbit Decay from Atmospheric Drag
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Time Until Orbital Decay

0 r
et —ets = Y p, (= t,)

hs 0

To find the time remaining (t,=0) until the orbit reaches any

given “critical” altitude, some algebra gives

hsf ho herit
t(hcrit) — \/,UTE,O < )

t(hcm’t) X 5

@/ UNIVERSITY OF Ballistic Entry
&'v_

M ARYL AND 25 ENAE 791 - Launch and Entry Vehicle Design




Decay Time to r=120 km
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Ballistic Entry (no lift)

s = distance along the flight path

dv , D

— = —gsiny — —

dt L m

G s Vdv >l

il ds dt - Sgls ) 4

1 d(v?) , D

= = —gsiny — —

2 ds R m

1 d(v? 2 .

— G = —gsiny — &ACD %dh

2 ds 2m ____7___4 dh

dsi—
siny d(v?) : v sin 7y
T
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Ballistic Entry (2)

Exponential atmosphere = p = poe_h_hs

dp _ _n (—dh\ _ pee ® (—dh\ _p (—dh
Uor oy, . i) DGR

iy
dh = dp
0
siny d(v?) , v
=" ——A
o dh T
siny d(v?) [ —p , ov? Acp
= —gsiny —
2 dp hs s 2 m
d(v2 )2 gl e e VA
= S
dp o, siny m
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Ballistic Entry (3)

Let 8 = = Ballistic Coeflicient

m
CDA
d(v?) . e

0 g2
dp Ny WE.Si p

Assume mg < D to get homogeneous ODE

d(UZ) hs 2

d(v?) b
dp 3 sin 7y

== O oy
V2 (3 sin y

dp

Use (v2) as integration variable

vV d(UQ) hs P
/ = / dp v. = velocity at entry
Yy U Bsiny Jg

e
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Ballistic Entry (4)

Note that the effect of ignoring gravity is that there is no force
perpendicular to velocity vector = constant flight path angle y

= straight line trajectories

2
lnv—:21n£: fosp

B v sy

v hsp
— = eXx
Ve . 23 siny

kg

hs o) g m-_s

v exp '0 - Check units: km3
Ve 23 siny p, kg
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Earth Entry, y=-60°
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What About Peak Deceleration?

dv pv?
= == =
dt 283
\
d ([ dv d?v
To find 1,42, set o (_t> T 0
d?v I v dp
= T [ \9p] SR Ry
dt? 2ﬁ<p Tl dt)
d? 1 Tl d
v _ 1 (2% Ldp)
dt2 20 28 dt
2,3 d d
A o2y = ap
3 dt dt
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Peak Deceleration (2)

From exponential atmosphere,
do o, »dh _ ol
dt h, dt hs dt
dh

From geometry, = v SIn 7y
@ M SIn vy 05— @
dt hs dt

p*v =3 (—% Si]fl’}/)

Remember that this refers to the conditions at max deceleration

pnmaw T W Slnfy

hs
@/ UNIVERSITY OF Ballistic Entry
&'v A

M ARYL AND 33 ENAE 791 - Launch and Entry Vehicle Design



Critical p for Deceleration Before Impact

At surface, p = p,

=) Pols < Value of 3 at which vehicle hits
Bcrit o B P : 4 A
sin~ | ground at point of maximum deceleration

How large is maximum deceleration?
2

dv  pv? dv Primas
L e = | — =
dt 26 dt max 25

dv v? : 1 02

— = — | ——sin = __ __gj

at| 23 B o 27 sin 7y

Note that this value of v is actually v,
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Peak Deceleration (3)

From page 14,

T -
dv 1 (vee ¥ ) , L i
77 = —— siny = ——57—

Note that the velocity at which maximum deceleration occurs is always a fixed fraction of
the entry velocity - it doesn’t depend on ballistic coefficient, flight path angle, or anything
else! Also, the magnitude of the maximum deceleration is not a function of ballistic

max

coefﬁcient it is dependent on the entry trajectory (ve and y) but not spacecraft parameters
(i.e., ballistic coefhicient).
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Terminal Velocity

Full form of ODE -
d (v?) e 24

A A /l] o
dp [ siny p

At terminal velocity, v = constant = vp

o hs 2 2gh
Gsiny ©  p
o _ | 2g0siny
Vp = 4[| —
0
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“Cannon Ball” y=-90° Ballistic Entry
6.75” diameter sphere, cp=0.2, VE=6000 m/sec

Iron Aluminum | Balsa Wood
Weight 40 Ib 15.6 Ib 14.5 oz
B (kg/m2) 3938 1532 89
pmd (kg/m3) 0.555 0.216 0.0125
Rma (M) 5600 12,300 32,500
Vimpact (M/S) 1998 355 0*
Vierm (M/sec) 251 156 38

*Artifact of assumption that D > mg

(0 7
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Atmospheric Density with Altitude

Pressure=the integral of the atmospheric density in
the column above the reference area

15 o

Po — / pgdh — pog/ e_%dh = _poghs [B_E}

= —poghs [0 — 1]

(0]

p=f(h)

Po o poghs

k
Earth: p, = 1.226—=; h, = 7524m;
m
P,(calc) = 90,400 Pa; P,(act) = 101,300 Pa
Po; Lo
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Nondimensional Ballistic Coefficient

v = hspo P P, P
e : = ex ,
Ve 5 23siny p, £ 2Bgsin~y p,

Let B = ° i (Nondimensional form of ballistic coefficient)
pOhS PO
Note that we are using the estimated value of P, = p,ghs,
not the actual surface pressure.
— =exp | —
Ve 25 sin 8 Po
Poh ~ 1
507“2'15 i .O > ch’t T
sin y sin vy
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Entry Velocity Trends, y=-90°

Velocity Ratio
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