Ballistic/Lifting Atmospheric Entry

- Straight-line (no gravity) ballistic entry based on altitude, rather than density
- Planetary entries (at least a start)
- Basic equations of planar motion (with lift)
- Lifting equilibrium glide

Terminal Velocity

Full form of ODE -

$$\frac{d\left(v^{2}\right)}{d\rho} - \frac{h_{s}}{\beta \sin \gamma}v^{2} = \frac{2gh_{s}}{\rho}$$

At terminal velocity, $v = \text{constant} \equiv v_T$

$$-\frac{h_s}{\beta \sin \gamma} v_T^2 = \frac{2gh_s}{\rho}$$

$$v_T^2 = \sqrt{-\frac{2g\beta\sin\gamma}{\rho}}$$

"Cannon Ball" γ=-90° Ballistic Entry

6.75" diameter sphere, $c_D=0.2$, $V_E=6000$ m/sec

	Iron	Aluminum	Balsa Wood
Weight	40 lb	15.6 lb	14.5 oz
β (kg/m²)	3938	1532	89
ρ _{md} (kg/m³)	0.555	0.216	0.0125
h _{md} (m)	5600	12,300	32,500
V _{impact} (m/s)	1998	355	0*
V _{term} (m/sec)	251	156	38

*Artifact of assumption that $D \gg mg$

Atmospheric Density with Altitude

Pressure=the integral of the atmospheric density in the column above the reference area

$$\rho = f(h) \qquad P_o = \int_o^\infty \rho g dh = \rho_o g \int_o^\infty e^{-\frac{h}{h_s}} dh = -\rho_o g h_s \left[e^{-\frac{h}{h_s}} \right]_o^\infty = -\rho_o g h_s \left[0 - 1 \right]$$

$$P_o = \rho_o g h_s$$

Earth:
$$\rho_o = 1.226 \frac{kg}{m^3}$$
; $h_s = 7524m$;

$$P_o(calc) = 90,400 \ Pa; P_o(act) = 101,300 \ Pa$$

$$\rho_o, P_o$$

Nondimensional Ballistic Coefficient

$$\frac{v}{v_e} = \exp\left(\frac{h_s \rho_o}{2\beta \sin \gamma} \frac{\rho}{\rho_o}\right) = \exp\left(\frac{P_o}{2\beta g \sin \gamma} \frac{\rho}{\rho_o}\right)$$

Let
$$\widehat{\beta} \equiv \frac{\beta}{\rho_o h_s} = \frac{\beta g}{P_o}$$
 (Nondimensional form of ballistic coefficient)

Note that we are using the estimated value of $P_o = \rho_o g h_s$, not the actual surface pressure.

$$\frac{v}{v_e} = \exp\left(\frac{1}{2\widehat{\beta}\sin\gamma} \frac{\rho}{\rho_o}\right)$$

$$\beta_{crit} = -\frac{\rho_o h_s}{\sin \gamma}$$

$$\beta_{crit} = -\frac{\rho_o h_s}{\sin \gamma} \qquad \widehat{\beta}_{crit} = -\frac{1}{\sin \gamma}$$

Entry Velocity Trends, γ=-90°

Ballistic Entry, Again

s = distance along the flight path

$$\frac{dv}{dt} = -g\sin\gamma - \frac{D}{m}$$

Again assuming $D \gg g$,

$$\frac{dv}{dt} = -\frac{D}{m} \qquad \text{Drag } D \equiv \frac{1}{2}\rho v^2 A c_D$$

$$\frac{dv}{dt} = -\frac{\rho c_D A}{2m} v^2$$

 $\bar{horizontal}$

Separating the variables,

$$\frac{dv}{v^2} = -\frac{\rho}{2\beta}dt$$

Calculating the Entry Velocity Profile

$$\frac{dh}{dt} = v\sin\gamma \Rightarrow dt = \frac{dh}{v\sin\gamma}$$

$$\frac{dv}{v^2} = -\frac{\rho}{2\beta v \sin \gamma} dh \quad \Rightarrow \frac{dv}{v} = -\frac{\rho}{2\beta \sin \gamma} dh$$

$$\frac{dv}{v} = -\frac{\rho_o}{2\beta \sin \gamma} e^{-\frac{h}{hs}} dh$$

$$\int_{v_o}^{v} \frac{dv}{v} = -\frac{\rho_o}{2\beta \sin \gamma} \int_{h_o}^{h} e^{-\frac{h}{hs}} dh$$

$$\ln \frac{v}{v_e} = \frac{\rho_o h_s}{2\beta \sin \gamma} \left[e^{-\frac{h}{hs}} \right]_{h_e}^h = \frac{1}{2\widehat{\beta} \sin \gamma} \left[e^{-\frac{h}{hs}} - e^{-\frac{h_e}{hs}} \right]$$

Deriving the Entry Velocity Function

Remember that
$$e^{-\frac{h_e}{h_s}} = \frac{\rho_e}{\rho_o} \approx 0$$

$$\frac{v}{v_e} = \exp\left[\frac{1}{2\widehat{\beta}\sin\gamma}e^{-\frac{h}{hs}}\right]$$

We have a parametric entry equation in terms of nondimensional velocity ratios, ballistic coefficient, and altitude. To bound the nondimensional altitude variable between 0 and 1, rewrite as

$$\frac{v}{v_e} = \exp\left[\frac{1}{2\widehat{\beta}\sin\gamma}e^{-\frac{h}{he}\frac{h_e}{h_s}}\right]$$

 $\frac{h_e}{h_s}$ and $\hat{\beta}$ are the only variables that relate to a specific planet

Earth Entry, $\gamma = -90^{\circ}$

Deceleration as a Function of Altitude

Start with

$$\frac{v}{v_e} = \exp\left[\frac{1}{2\widehat{\beta}\sin\gamma}e^{-\frac{h}{he}\frac{h_e}{h_s}}\right] \qquad \text{Let } B \equiv \frac{1}{2\widehat{\beta}\sin\gamma}$$

$$\frac{v}{v_e} = \exp\left(Be^{-\frac{h}{h_s}}\right)$$

$$\frac{d}{dt}\left(\frac{v}{v_e}\right) = \exp\left(Be^{-\frac{h}{h_s}}\right)\frac{d}{dt}\left(Be^{-\frac{h}{h_s}}\right)$$

$$\frac{dv}{dt} = v_e \exp\left(Be^{-\frac{h}{h_s}}\right)\frac{-B}{h_s}\left(e^{-\frac{h}{h_s}}\right)\frac{dh}{dt}$$

$$\frac{dh}{dt} = v\sin\gamma = v_e\sin\gamma\exp Be^{-\frac{h}{h_s}}$$

Parametric Deceleration

$$\frac{dv}{dt} = v_e \exp\left(Be^{-\frac{h}{h_s}}\right) \frac{-B}{h_s} \left(e^{-\frac{h}{h_s}}\right) v_e \sin\gamma \exp\left(Be^{-\frac{h}{h_s}}\right)$$

$$\frac{dv}{dt} = \frac{-Bv_e^2}{h_s} \sin\gamma \left(e^{-\frac{h}{h_s}}\right) \exp\left(2Be^{-\frac{h}{h_s}}\right)$$

$$\frac{dv}{dt} = \frac{-v_e^2}{2h_s\widehat{\beta}} \left(e^{-\frac{h}{h_s}} \right) \exp\left(\frac{1}{\widehat{\beta}\sin\gamma} e^{-\frac{h}{h_s}} \right)$$

Let
$$n_{ref} \equiv \frac{v_e^2}{h_s}$$
, $\nu \equiv \frac{dv/dt}{n_{ref}}$, $\varphi \equiv \frac{h_e}{h_s}$

$$\nu = \frac{-1}{2\widehat{\beta}} \left(e^{-\varphi \frac{h}{h_e}} \right) \exp \left(\frac{1}{\widehat{\beta} \sin \gamma} e^{-\varphi \frac{h}{h_e}} \right)$$

Nondimensional Deceleration, γ=-90°

Deceleration Equations

Nondimensional Form

$$\nu = \frac{-1}{2\widehat{\beta}} \left(e^{-\varphi \frac{h}{h_e}} \right) \exp \left(\frac{1}{\widehat{\beta} \sin \gamma} e^{-\varphi \frac{h}{h_e}} \right)$$

Dimensional Form

$$n = \frac{-\rho_o V_e^2}{2\beta} \left(e^{-\frac{h}{h_s}} \right) \exp\left(\frac{\rho_o h_s}{\beta \sin \gamma} e^{-\frac{h}{h_s}} \right)$$

Note that these equations result in values <0 (reflecting deceleration) - graphs are absolute values of deceleration for clarity.

Dimensional Deceleration, γ=-90°

Altitude of Maximum Deceleration

Returning to shorthand notation for deceleration

$$\nu = -B\sin\gamma\left(e^{-\frac{h}{h_s}}\right)\exp\left(2Be^{-\frac{h}{h_s}}\right)$$

Let
$$\eta \equiv \frac{h}{h_s}$$

$$\nu = -B\sin\gamma \left(e^{-\eta}\right)\exp\left(2Be^{-\eta}\right)$$

$$\frac{d\nu}{d\eta} = -B\sin\gamma \left[\frac{d}{d\eta} \left(e^{-\eta} \right) \exp\left(2Be^{-\eta} \right) + \left(e^{-\eta} \right) \frac{d}{d\eta} \exp\left(2Be^{-\eta} \right) \right]$$

$$\frac{d\nu}{dn} = -B\sin\gamma \left[-\left(e^{-\eta}\right)\exp\left(2Be^{-\eta}\right) + \left(e^{-\eta}\right)\left(-2Be^{-\eta}\right)\exp\left(2Be^{-\eta}\right) \right]$$

$$\frac{d\nu}{dn} = B\sin\gamma e^{-\eta}\exp\left(2Be^{-\eta}\right)\left[1 + \left(2Be^{-\eta}\right)\right] = 0$$

Altitude of Maximum Deceleration

$$1 + (2Be^{-\eta}) = 0 \quad \Rightarrow e^{\eta} = -2B$$

$$\eta_{n_{max}} = \ln\left(-2B\right)$$

$$\eta_{n_{max}} = \ln\left(\frac{-1}{\widehat{\beta}\sin\gamma}\right)$$

Converting from parametric to dimensional form gives

$$h_{n_{max}} = h_s \ln \left(\frac{-\rho_o h_s}{\beta \sin \gamma} \right)$$

Altitude of maximum deceleration is independent of entry velocity!

Altitude of Maximum Deceleration

Magnitude of Maximum Deceleration

Start with the equation for acceleration -

$$\nu = \frac{-1}{2\widehat{\beta}} e^{-\eta} \exp\left(\frac{1}{\widehat{\beta}\sin\gamma} e^{-\eta}\right)$$

and insert the value of η at the point of maximum deceleration

$$\eta_{n_{max}} = \ln\left(\frac{-1}{\widehat{\beta}\sin\gamma}\right) \Rightarrow e^{-\eta} = -\widehat{\beta}\sin\gamma$$

$$\nu_{n_{max}} = \frac{-1}{2\widehat{\beta}} \left(-\widehat{\beta} \sin \gamma \right) \exp \left(\frac{-\widehat{\beta} \sin \gamma}{\widehat{\beta} \sin \gamma} \right) \quad \Rightarrow \nu_{n_{max}} = \frac{\sin \gamma}{2e}$$

$$n_{max} = \frac{v_e^2}{h_s} \frac{\sin \gamma}{2e}$$

Maximum deceleration is not a function of ballistic coefficient!

Peak Ballistic Deceleration for Earth Entry

Velocity at Maximum Deceleration

Start with the equation for velocity

$$\frac{v}{v_e} = \exp\left[\frac{1}{2\widehat{\beta}\sin\gamma}e^{-\eta}\right]$$

and insert the value of η at the point of maximum deceleration

$$\eta_{n_{max}} = \ln\left(\frac{-1}{\widehat{\beta}\sin\gamma}\right) \Rightarrow e^{-\eta} = -\widehat{\beta}\sin\gamma$$

$$\frac{v}{v_e} = \exp\left[\frac{-\widehat{\beta}\sin\gamma}{2\widehat{\beta}\sin\gamma}\right] \Rightarrow v_{n_{max}} = \frac{v_e}{\sqrt{e}} \approx 0.606v_e$$

Velocity at maximum deceleration is independent of everything except v_e

Planetary Entry - Physical Data

	Radius (km)	μ (km 3 /sec 2)	$ ho_{o}$ (kg/m³)	h _s (km)	V _{esc} (km/sec)
Earth	6378	398,604	1.225	7.524	11.18
Mars	3393	42,840	0.0993	27.70	5.025
Venus	6052	325,600	16.02	6.227	10.37

Comparison of Planetary Atmospheres

Planetary Entry Profiles

Planetary Entry Deceleration Comparison

Check on Approximation Formulas

Lifting Entry - Free-Body Diagram

Dynamics of Lifting Entry

Along the velocity vector,

$$m\frac{dv}{dt} = m\frac{v^2}{r}\sin\gamma - mg\sin\gamma - D$$

Perpendicular to the velocity vector,

$$mv\frac{d\gamma}{dt} = L + m\frac{v^2}{r}\cos\gamma - mg\cos\gamma$$

(unbalanced lift rotates flight path angle)

Equations of Planar Lifting Entry

$$\frac{dv}{dt} = \left(\frac{v^2}{r} - g\right)\sin\gamma - \frac{D}{m}$$

$$v\frac{d\gamma}{dt} = \frac{L}{m} + \left(\frac{v^2}{r} - g\right)\cos\gamma$$

Equilibrium Glide

• Forces perpendicular to velocity vector are balanced

$$\implies \frac{d\gamma}{dt} = 0; \ \gamma = \text{constant}$$

Typically very shallow glide

$$\implies$$
 assume $\gamma \to 0$; $\sin(\gamma) \to 0$; $\cos(\gamma) \to 1$

Equilibrium Glide Equations

$$\frac{dv}{dt} = -\frac{D}{m}$$

$$D = \frac{1}{2}\rho v^2 c_D A$$

$$\rho = \rho_o e^{-\frac{h}{h_s}}$$

$$\frac{dv}{dt} = -\frac{1}{2}\rho_o v^2 \frac{c_D A}{m} e^{-\frac{h}{h_s}}$$

$$0 = \frac{L}{m} + \left(\frac{v^2}{r} - g\right)$$

$$\frac{v^2}{r} - g = -\frac{1}{2}\rho_o v^2 \frac{c_L A}{m} e^{-\frac{h}{h_s}}$$

Dynamics Perpendicular to Velocity

$$\frac{c_L}{c_D} = \frac{L}{D}$$

L/D set by vehicle aerodynamics, flight velocity, and angle of attack (assumed constant)

$$\frac{v^2}{r} - g = -\frac{1}{2}\rho_o v^2 \frac{L}{D} \frac{c_D A}{m} e^{-\frac{h}{h_s}}$$

$$\frac{v^2}{r} = -\frac{1}{2}\rho_o v^2 \frac{L/D}{\beta} e^{-\frac{h}{h_s}} + g$$

$$v^{2} = -\frac{1}{2}\rho_{o}rv^{2}\frac{L/D}{\beta}e^{-\frac{h}{h_{s}}} + gr$$

More Lift-Direction Dynamics

Let
$$e^{-\frac{h}{h_s}} \equiv \sigma \ \left(= \text{density ratio} \equiv \frac{\rho}{\rho_o} \right)$$

$$v^2 + \frac{1}{2}\rho_o r v^2 \frac{L/D}{\beta} \sigma = gr$$

$$v^2 \left(1 + \frac{1}{2} \rho_o r \frac{L/D}{\beta} \sigma \right) = gr$$

$$v = \sqrt{\frac{gr}{1 + \frac{\rho_o r \sigma(L/D)}{2\beta}}}$$

Velocity during Entry

$$v_{c_o} = \sqrt{\frac{\mu}{r_o}} = \sqrt{g_o r_o} \qquad (\mu = g_o r_o^2)$$

$$\frac{v}{v_{c_o}} = \sqrt{\frac{1}{1 + \frac{\rho_o r_o \sigma(L/D)}{2\beta}}}$$

 $v_{c_o} \cong v_e$ (within 1-2% for Earth)

$$\frac{v}{v_e} = \left[1 + \frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}\right]^{-\frac{1}{2}}$$

Entry trajectory as a function of altitude, ratio $\left(\frac{\beta}{L/D}\right)$

Equilibrium Glide Velocity Trends

Trends with "Lifting Ballistic Coefficient"

Nondimensional Form of Equation

$$\frac{v}{v_e} = \left[1 + \frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}\right]^{-\frac{1}{2}}$$

$$\frac{v}{v_e} = \left[1 + \frac{\rho_o h_s}{2\beta} \frac{r_o}{h_s} \frac{L}{D} e^{-\frac{h}{h_s}}\right]^{-\frac{1}{2}}$$
Remember $\hat{\beta} \equiv \frac{\beta}{\rho_o h_s}$

$$\frac{v}{v_e} = \left[1 + \frac{1}{2\widehat{\beta}} \frac{r_o}{h_s} \frac{L}{D} e^{-\frac{h}{h_e} \frac{h_e}{h_s}}\right]^{-\frac{1}{2}}$$

Deceleration

$$\frac{L}{m} = g - \frac{v^2}{r} = g - \frac{gv^2}{gr} = g \left[1 - \left(\frac{v}{v_{c_o}}\right)^2 \right]$$

$$\frac{dv}{dt} = -\frac{D}{m} = -\frac{L}{L/D}\frac{1}{m} = -\frac{1}{L/D}\frac{L}{m}$$

$$\frac{dv}{dt} = -\frac{g}{L/D} \left[1 - \left(\frac{v}{v_{c_o}} \right)^2 \right]$$

Deceleration

Let
$$n \equiv \frac{1}{g} \frac{dv}{dt}$$
 (deceleration in g's)

$$n = -\frac{1}{L/D} \left[1 - \left(\frac{v}{v_{c_o}} \right)^2 \right]$$

$$n = -\frac{1}{L/D} \left[1 - \frac{1}{1 + \frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}} \right]$$

Note:
$$1 - \frac{1}{1+K} = \frac{1+K}{1+K} - \frac{1}{1+K} = \frac{K}{1+K}$$

Deceleration

$$n = -\frac{1}{L/D} \left[\frac{\frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}}{1 + \frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}} \right]$$

$$n = -\frac{\frac{\rho_o r_o}{2\beta} e^{-\frac{h}{h_s}}}{1 + \frac{\rho_o r_o}{2\beta} \frac{L}{D} e^{-\frac{h}{h_s}}}$$

$$n = \frac{-1}{\frac{2\beta}{\rho_o r_o} e^{+\frac{h}{h_s}} + \frac{L}{D}}$$

n monotonically increases with decreasing altitude

Deceleration Trends with Altitude

Limiting Deceleration

$$n_{limit} = \frac{-1}{\frac{2\beta}{\rho_o r_o} + \frac{L}{D}}$$

$$\beta \sim O(10^3); \ \rho_o \sim O(1); \ r_o \sim O(10^6) \Longrightarrow \frac{2\beta}{\rho_o r_o} \sim O(10^{-3})$$

$$n_{limit} \cong \frac{-1}{L/D}$$

Lift significantly moderates peak g's on entry $(L/D=0.25 --> n_{limit}=4 g's)$

Time for Entry

$$\frac{dv}{dt} = -\frac{g}{L/D} \left[1 - \left(\frac{v}{v_{c_o}} \right)^2 \right]$$

$$dt = \frac{-(L/D)dv}{g\left[1 - \left(\frac{v}{v_{c_o}}\right)^2\right]}$$

$$\int_0^t dt = \int_{v_e}^0 \frac{-(L/D)dv}{g \left[1 - \left(\frac{v}{v_{co}}\right)^2\right]}$$

Time for Entry

$$\Delta t = \frac{1}{2} \sqrt{\frac{r_o}{g_o}} \frac{L}{D} \ln \frac{1 + \left(\frac{v}{v_{c_o}}\right)^2}{1 - \left(\frac{v}{v_{c_o}}\right)^2}$$

Time for entry
$$\propto \frac{L}{D}$$

Not a function of β

Time From Entry Interface

Distance Along Flight Path

For shallow entry,
$$\frac{ds}{dt} \cong v$$
 $ds = v dt$

$$ds = \frac{-(L/D)v \ dv}{g \left[1 - \left(\frac{v}{v_{c_o}}\right)^2\right]}$$

Let
$$u \equiv 1 - \left(\frac{v}{v_{c_o}}\right)^2$$
 $du = \frac{-2v}{v_{c_o}^2} dv$ $v \, dv = \frac{-v_{c_o}^2}{2} du$

$$\int ds = \frac{L/D}{2g} \int \frac{v_{c_o}^2 du}{u}$$

Ballistic and Lifting Atmospheric Entry ENAE 791 - Launch and Entry Vehicle Design

Distance Along Flight Path

$$\Delta s = \frac{(L/D)v_{c_o}^2}{2g} \ln u = \frac{(L/D)g_o r_o}{2g_o} \ln \left[1 - \left(\frac{v}{v_{c_o}}\right)^2\right]$$

$$\Delta s = \frac{r_o}{2} \frac{L}{D} \ln \left[1 - \left(\frac{v}{v_{c_o}} \right)^2 \right]$$

Not a function of β or g

Distance from Entry

Bank Angle

$$\phi \equiv \text{Bank Angle}$$

Level turn: $L\cos\phi = mg$

$$\frac{L}{mg} = \frac{1}{\cos \phi} \equiv n_{bank}$$

(g's you pull in the banked turn)

Crossrange (without derivations)

- Use of lift to deviate laterally from planar groundtrack
- Optimum bank angle to maximize crossrange

$$\phi_{opt} \cong \cot^{-1} \sqrt{1 + 0.106 \left(\frac{L}{D}\right)^2}$$

• Maximum achievable crossrange

$$y_{max} \cong \frac{r_o}{5.2} \left(\frac{L}{D}\right)^2 \frac{1}{\sqrt{1 + 0.106 \left(\frac{L}{D}\right)^2}}$$

Crossrange Based on L/D

Early Shuttle Design Configurations

- Delta wing configuration
 - High hypersonic lift
 - High landing velocity
 - High crossrange
- Straight-wing configuration
 - High subsonic lift
 - Low(er) landing velocity
 - Low crossrange

