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Entry Aerodynamics
• Atmospheric Regimes on Entry
• Basic fluid parameters
• Definition of Mean Free Path
• Rarified gas Newtonian flow
• Continuum Newtonian flow (hypersonics)
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Basic Fluids Parameters
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Random vs. Ordered Energy
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More Fluid Parameters
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K =

number of collisions with body

number of collisions with other molecules

K ⌘ Knudsen number

K =
�

L

� ⌘ mean free path

L ⌘ vehicle characteristic length
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Estimating Mean Free Path
Assume:
• All molecules are perfect rigid spheres
• Each has diameter σ, mass m, and velocity
• Consider a cube with side length L containing N 

molecules
• N/6 molecules are traveling in each direction

– ±X
– ±Y
– ±Z
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Consider Collisions in +Z Direction
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Consider Collisions in +X Direction
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Mean Free Path
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Five Basic Flow Regimes
• Free molecular regime
• Near-free molecular regime
• Transition regime
• Viscous merged boundary layer
• Continuous regime
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Entry Flow Regimes

ref: Frank J. Regan, Reentry Vehicle Dynamics AIAA Education Series, NY, NY 1984
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Flow Regime Definitions
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Free Molecular Regime
• Orbital flight
•   
• Molecule encountering a boundary (e.g., surface of 

vehicle) attains the state of the boundary aer a 
single collision

•
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Kc � 10 or K1 > 5.24M1
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Newtonian Flow
• Mean free path of 

particles much larger than 
spacecra --> no 
appreciable interaction of 
air molecules

• Model vehicle/ 
atmosphere interactions 
as independent perfectly 
elastic collisions

α

α
V

V
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Newtonian Analysis

α

AA sin(α)

ρ

V
mass flux = (density)(swept area)(velocity)

dm

dt
= (ρ)(A sinα)(V )
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Momentum Transfer

• Momentum 
perpendicular to wall 
is reversed at impact

• “Bounce” momentum 
is transferred to 
vehicle

• Momentum parallel 
to wall is unchanged

Vsin(α)

V

F

V

F =
dm

dt
∆V = ρV A sinα(2V sinα) = 2ρV 2A sin2 α
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Lift and Drag
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Flat Plate Newtonian Aerodynamics
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Example of  Newtonian Flow Calculations

Consider a cylinder of  length l, entering
atmosphere transverse to flow

dF

dD
dLV

r
θdṁ = ρdA cos θV = ρV cos θrdθd#

dF = dṁ∆V = 2ρV 2
cos

2 θrdθd#

dA = rdθdl

dD = dF cos θ = 2ρV 2
cos

3 θrdθd#
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Integration to Find Drag Coefficient

Integrate from 

By definition,                              and, for a cylinder

D =

∫ + π

2

−

π

2

∫ !

0

dD = 2ρV 2r

∫ + π

2

−

π

2

∫ !

0

cos
3 θdθd#

D =
1

2
ρV 2AcD A = 2r!

θ = −

π

2
→

π

2

19

= 2⇢V 2r`

Z +⇡
2

�⇡
2

cos

3 ✓d✓ =

8

3

⇢V 2r`

⇢V 2r`cD =
8

3
⇢V 2r` =) cD =

8

3



Entry Aerodynamics
ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y  O F
MARYLAND

Near Free Molecular Flow Regime
• Also known as “slip region”
• Gas molecule only attains state of moving boundary 

aer several collisions
• Molecules near the wall will have a different velocity 

from the wall
• Temperature will be nearly discontinuous function 

of separation from wall
•

20

10  Kc 
1

3

or 5.4M1  K1  0.175M1
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Transition Region
• Very difficult to treat analytically
• For engineering purposes, usually treated as 

interpolation between slip and viscous flow
•
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0.175M1  K1  1
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Viscous Merged Layer Regime
• Viscous effects in forming shock and boundary layer 

must be treated in a unified manner
– Boundary layer on the wall alters the conditions for the 

forming shock wave
– Large pressure gradients across the shock wave 

significantly alter the boundary layer
• Neither shocks nor boundary layers can be treated as 

discontinuities
•

22

1  K1  0.1

⇢s/⇢1
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Continuous Regime
• Classical fluid mechanics of high Reynolds number
• Shock waves and boundary layer treated as 

discontinuities
•  
• Subdivided based on Mach number

– Incompressible (subsonic)
– Transonic
– Supersonic
– Hypersonic

23

(M  ⇠ 0.8)

(⇠ 0.8  M  ⇠ 1.3)

(⇠ 1.3  M  ⇠ 5)

(⇠ 5  M)

K1 >
0.1

⇢s/⇢1
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Continuum Newtonian Flow (Hypersonics)

• Air molecules 
predominately interact 
with shock waves

• Effect of shock wave 
passage is to decelerate 
flow and turn it parallel 
to vehicle surface

αV

Shock wave
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Continuum Newtonian Flow (Hypersonics)

• Treat hypersonic 
aerodynamics in manner 
similar to previous 
Newtonian flow analysis

• All momentum 
perpendicular to wall is 
absorbed by the wall

αV
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Mass Flux (unchanged)

α

AA sin(α)

ρ

V
mass flux = (density)(swept area)(velocity)

dm

dt
= (ρ)(A sinα)(V )
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Momentum Transfer
• Momentum 

perpendicular to 
wall is absorbed at 
impact and 
transferred to 
vehicle

• Momentum parallel 
to wall is unchanged

Vsin(α)

V

F

Vcos(α)

F =
dm

dt
∆V = ρV A sin α(V sinα) = ρV 2A sin2 α

27



Entry Aerodynamics
ENAE 791 - Launch and Entry Vehicle Design

U N I V E R S I T Y  O F
MARYLAND

Lift and Drag
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Modified Newtonian Flow
• Coefficient of pressure in “classical” Newtonian flow

• Coefficient of pressure in modified Newtonian flow

• Cp(max) is the pressure coefficient behind a normal 
shock at flight conditions
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Maximum Coefficient of  Pressure
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