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Aeromaneuvering
o Using atmospheric flight forces to affect orbit
changes while minimizing propellents
o Acrocapture - decelerating into planetary orbit from
a single pass
o Acrobraking - lowering apoapsis by atmospheric

passes (single or multiple)

e Aeromancuvering - using aecrodynamic forces (e.g.,
lift) to perform advanced maneuvers such as plane

change
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The Challenge of Mars EDL (Entry,
Descent, and Landing)
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2. Enter Atmosphere

Aerocapture saves mass by using the
atmosphere rather than a propulsive : 3. Begin Bank Angle
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Why is Mars EDL so difficult?

Q ATMOSPHERE:

* Thin Martian atmosphere (surface density equivalent to Earth’s at 30
km)

* Too little atmosphere to decelerate and land like we do at Earth
* Atmosphere is thick enough to create significant heating during entry

Local Atmospheric Density at 500 m Altitude

1.167

Lack of understanding of the atmosphere:

* Aerodynamics, aeroheating, winds, and density variations
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Atmospheric Thermal Profiles
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Atmospheric Density Profiles
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Mars EDL History

All six of the successful U.S. Mars EDL systems had:
* Low Landing Site: elevation sites below |
* Low Mass: Had landed masses of less than 0.6 MT

* UNGUIDED: Had large uncertainty in targeted landing location (300 km for
Mars Pathfinder, 80 km for MER)

v

Mars Science Laboratory (MSL) ‘11 EDL Architecture:

* Low Landing Site: Landed elevation requirement for sites below 0 km MOLA
* Low Mass: Has landed mass of 0.9 MT

* GUIDED: Has uncertainty in targeted landing location of 10km

% HUMANS need more capability:

52 ¢+ Al of the current Mars missions have relied on large technology
Py investments made in the late 1960s and early 1970’s as part of the Viking
Program (heatshield shape, thermal protection material, and parachute)

 Large Mass (Entry Mass of ~100 - 150 MT)
* Higher elevations — interesting science
* Precision Landing




6 U.S. Mars Entry, Descent, and Landing Successes
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Current Mars Accessibility

Previous Viking derived EDL systems and the thin Martian atmosphere and small scale height
have limited accessible landing sites to those below -1.0km MOLA

To date the southern hemisphere has been largely out of reach (approximately 50% of the
planet surface remains inaccessible with current EDL technologies)

Mars surface above -1.0km MOLA in black

(Courtesy of Rob Manning, JPL) Alrtude Above MOLA Arenid (m)




Landing Site Elevation / Accessibility =

MOLA 1/4° Topographic Data < 2.5 km (90% of Surface)
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Mars Heritage Aeroshell - Mission Comparisons

Viking MPF MER Phoenix MSL

Core Viking Technologies:

70° sphere-cone aeroshell . . ’

Parameter Viking MPF MER Phoenix MSL
Entry Mass (kg) / Ballistic Coeff. (kg/m) 980 / 66 585/63 836 /90 603 / 65 3257 / 140
Lander/Rover Mass (kg) 612 11 173 64 850
Aeroshell Diameter (m) 35 2.65 2.65 2.65 4.5
Angle-of-Attack (deg) / L/D 11.1°/0.18 0°/0.0 0°/0.0 0°/0.0 -15.5°/0.24
Peak Heatrate (W/cm) 21 106 a4 59 <210
Parachute Diameter (m) 16.15 124 14.1 11.5 19.7
Landing Site Elevation (km) 3.5 -1.5 -1.3 -3.5 0.0
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EDL Phase Plot — A Handy Way to Visualize EDL
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Robotic program: No gap so far.... <<
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How would Humans Land?
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EDL Technology Development

* Technologies that can help close the “gap”
— Rigid Aeroshell
— Inflatable Aerodynamic Decelerator (IAD)
— Supersonic Retro-Propulsion

* QOther technologies of interest
— Aerocapture
— Precision Landing
— Hazard Detection and Avoidance

15



Md LD, Aarodynami

Surface Control

L
Movoabe
L a9
ow LD, Moveable
Ballast Contr




Inflatable Aerodynamic Decelerators — »st




Viking Parachute Configuration

— e “Disk-Gap-Band” (DGB) or
“bandgap” parachute

e Deployed at Mach 2

e Had to have sufhicient
deceleration to allow jettison of
heat shield and dropping of

lander from aeroshell

298m

from Cruz and Lingard, “Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future,
ATAA 2006-6792, AIAA Guidance, Navigation, and Control Conference, August 2006
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Viking Chute Drag Coefficient Model
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Terminal Velocity

Full form of ODE -
d (UQ) hs 2 2gh

2 A /l] o
dp  [sinvy p

At terminal velocity, v = constant = vp
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Viking Terminal Velocity Under Chute
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Rigid and Inflatable Aeroshell vs. Chute
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Low Ballistic Coetticient Hypersonic Decelerator

Development Challenges

* For 50-100 MT entry masses we need a 20-40 m diameter aeroshell.

* Large uncertainties (unknown-unknowns):
— Lift control (how to modulate drag) with large density uncertainties

— Dynamic stability issues at supersonic and transonic conditions
- Subsonic position correction
— Subsonic separation mechanism

Specifically for an Inflatable Hypersonic Decelerator:

-~ Lift control

- RCS

-~ Fluid structures interactions

-~ Light weight flexible TPS with large radiative heating

Specifically for a Rigid On-orbit-deployed Hypersonic Decelerator:
— Mass fraction of Aeroshell & deployment device

* Again, there are NO Earth analog for these systems.

— NASA, Russia and ESA have tested very small scale inflatable Earth entry systems (IRVE,
IRDT)
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What about Large Inflatable Entry Vehicles?

(ballistic coefficient = 50 kg/m? & L/D =0.3)
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Supersonic Retro-Propulsion

* Advantages:
* More precise landing — aerodynamics / winds now secondary effect
* Control authority and altitude from Mach > 3 to the ground
» Fewer complex systems (e.g.parachutes, deployable systems)

* Disadvantages:
» Large propellant mass fractions
» Aerodynamic stability of the vehicle plume and flow impingements
* RCS/flow interactions
— Aerodynamic / propulsion flow interactions
— Plume / flow aeroheating
» Surface contamination issues
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Potential Exploration Architectures

Some possible combinations...
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The Case for Precision Landing, Hazard Avoidance, D
and Pinpoint Landing

Pathfinder, Mars 98
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Precision Landing

* Precision landing is the capability to land very accurately

* Requires very good knowledge of the vehicle state (navigation) at the right
time, in addition to the ability to correct for state errors (guidance and
control)

* A combination of sensors including star tracker, inertial measurement unit
(IMU), altimeter, and velocimeter are used for state estimation

* Terrain Relative Navigation is a technology being developed for the Moon
and Mars which may enable a precision landing level of performance




Hazard Detection and Avoidance (HDA) st

* HDA is the capability to detect and avoid hazards during the landing

* Anonboard hazard map is developed real time during the descent using
flash LIDAR

* The flash LIDAR returns a 3-D image of the landing area which contains
higher resolution information of the landing area than currently possible
using orbit reconnaissance

* An updated landing point is then selected (either automatically or via crew
intervention) and the vehicle re-targets to the new landing point




Viking Panoramas (1976)
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Mars Pathfinder Rover (““Sojourner”)
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Mars Exploration Rover
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Opportunity Landing Targeting
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Sometimes the Bounces Go Your Way...
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...Opportunity Scores a Hole in One
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Spirit Lands in Gusev Crater
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Odyssey Finds its Heat Shield...
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Mars Phoenix Lander Touchdown
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