Mass Estimating Relations

e Review of iterative design approach
o Mass Estimating Relations (MERs)

o Sample vehicle design analysis
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Akin’s Laws of Spacecraft Design - #3

Design is an iterative process. The
necessary number of iterations is one more
than the number you have currently done.
This is true at any point in time.
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Vehicle-Level Prelim Design - 1st Pass

o Single Stage to Orbit (SSTO) vehicle
o AV=9200 m/sec

A
e 5000 kg payload r=e Ve =0.1127
e LOX/LH2 propellants N
— Isp=430 sec 7
(Ve=4214 m/sec) M, = Te — 153,000 kg
— 0=0.08

M; = 6M, = 12,240 kg

M, = M,(1—r) = 135,800 kg

2y UNIVERSITY OF Mass Estimating Relations

: ;)/ M ARYL AND 3 ENAE 791 - Launch and Entry Vehicle Design



System-Level Estimation

o Start with propellant tanks (biggest part)

o LOX/LH2 engines generally run at mixture ratio of
6:1 (by weight)
— LH2: 19,390 kg
_ LOX: 116,400 kg

e Propellant densities

kg kg
PLOX = 1140 » PLHy; — 71 2
m ™
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Propellant Tank Regression Data
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Propellant Tank MERs (Volume)
e LH) tanks

M, Tank{kg) = 9.09Vr g, (m?)

e All other tanks
Mzani(kg) = 12.16V,,0p(m>)
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Propellant Tank MERs (Mass)

e LH> tanks
k
Dt iy = m_% — MrH, Tank{kg) = 0.128 M g, (kg)
e LOX tanks
k
PLOX = 114Om_93 — MLOX Tank<kg> — 0-0107MLOX <:l€g>
e RP-1 tanllgs
PRP1 — SQOWL—% — MRpl Ta,nk:<kg> — 0.0148MRP1<]€g>
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Cryogenic Insulation MERs

kg
MLH2 Insulatzon<kg> = 2. 88Ata/nk<m2>
kg
MLOX Insulatzon<kg> = 1. 123Atank<m2>
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L.LOX Tank Design

o Mass of LOX=116,400 kg

MLOX Tank — 0.0107(116,400) = 1245 kg

e Need area to find LOX tank insulation mass -
assume a sphere

M
VLOX Tank — o — {025l m3
v 1 PLOX
O
'LOX Tank — ( 4;/;() = 2.90 m

Ar0x Tank = 4712 = 105.6 m?

kg
MLOX Insulation — = 1. 123< >(1O5 6< >) = 119 kg
m
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LH; Tank Design
e Mass of LH>=19,390 kg
MLH2 Tank<kg> — 0128(19, 390) — AR kg

e Again, assume LH) tank is spherical

M
ViH, Tank = ———2 = 273.1 m®
PLH,
1
Vi, \°®
. — = 4.02
FLHy Tank <47T/3> m
ALHg Tank — 47'('7“2 = 203.6 m2
k
ML, Insulation = 2.88<m—92>(203.6<m2>) = 586 kg
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Current Design Sketch

e Masses
— LOX Tank 1245 kg
— LOX Tank Insulation 119 kg
— LH; Tank 2482 kg

— LH>, Tank Insulation 586 kg
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High-Pressure Gas Tanks
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Pressurized Gas Tank MERs
o COPV (Composite Overwrapped Pressure Vessel)

MCOPV Tank(kg) = 115.3 Vcontents(mg) + 3
e Titanium tank

MC’OPV Tank(kg) — 2058 Vcontents (m?)) S
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Smaller Storable Liquids Tanks
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Small Liquid Tankage MERs

e Bare metal tanks

MBare Tank(kg) = 27.34 ‘/;zontents (mS) ——§7
e Tanks with propellant management devices

MPMD Tank(k'g) = 34.69 Vcontents (mS) el

e Titanium tanks with positive expulsion bladders

MD’iaphragm Tank(kg) =t Vcontents (mB) SE 3
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Minimum Cost Lunar Architecture
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Orbital Maneuvering Stage (OMS)

e Gross mass 6950 kg

— Inert mass 695 kg
— Propellant mass 6255 kg
— Mixture ratio N,O,/UDMH = 2.0 (by mass)

e N,0, tank
— Mass = 4170 kg
— Density = 1450 kg/m3
— Volume = 2.876 kg/m?3

e UDMH tank
— Mass = 2085 kg
— Density = 793 kg/m?
— Volume = 2.629 kg/m?3
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N,O, Tank Sizing
e Need total N,O, volume = 2.876 m3

e Single PMD tank

— Radius = 0.882 m

— Mass = 102.8 kg
e Dual PMD tanks

— Radius = 0.700 m

— Mass = 52.9 kg (x2 = 105.8 kg)
o Triple PMD tanks

— Radius = 0.612 m

— Mass = 36.3 kg (x3 = 108.9 kg)
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Tank Configuration Issues
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Other Structural MERs
e Fairings and shrouds
Mfai’r'ing<kg> = 4.95 (Afaz'ring <m2>)
e Avionics

Mavionics{kg) = 10 (Mo {kg))" ™"

1.15

e Wiring
M yiring(kg) = 1.068+/ M, {kg)£°-2°
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External Fairings - First Cut

Acone — T \/7/-2 S h2 Payload Fairing

Affrustfrum = 7-‘-(741 i T2)\/(Tl - T2)2 o= h?

Intertank Fairing

@
Acylinde’r p— 27TT]’L Aft Fairing /Boattail
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External Fairings - First Cut

e Assumptions
— P/L fairing 4
— P/L fairing r
— I/T fairing b
— I/T fairing r;
— I/T fairing »>
— Aft fairing /
— Aft fairing »
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7 m Payload Fairing
2.9 m
7 m

4 02 m Intertank Fairing

2.9 m
7 m

r=4.02 m
4.02 m
Aft Fairing /Boattail
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Fairing Analysis
o Payload Fairing

— Area 69.03 m2
— Mass 645 kg
e Intertank Fairing
— Area 154.1 m2
— Mass 1624 kg
o Aft Fairing LH2

r=4.02 m
— Area 176.8 m? U
— Mass 1902 kg
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Avionics and Wiring Masses

e Avionics

M ionics kg < 10 (153, 000)°:*° =P PEE

e Wiring

Myiring{kg) = 1.0584/153,000(21 m)°*° = 886 kg
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Propulsion MERs

e Liquid Pump-Fed Rocket Engine Mass
M (kg)=7.81x10*T(N) +

Rocket Engine
A

337x10”T(N)_ |[—= + 59
VA

e Solid Rocket Motor
M

Motor Casing

=0.135M

propellants

e Thrust Structure Mass

M (kg)=2.55x10"*T(N)

Thrust Structure
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Propulsion MERs (continued)
e Gimbal Mass

i _ 9375
My (kg) = 237 8 -0
B (Pa)
e Gimbal Torque
TN 1125
TGimbals(N -m) = 990,000
B,(Pa)
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Propulsion System Assumptions

e Initial T/mg ratio = 1.3
— Keeps final acceleration low with reasonable throttling
e Number of engines = 6

— Positive acceleration worst-case after engine out

00058 = 6897 kN

— Typical for high-performance LOX/LH?2 engines

o Chamber pressufe(

o Expansion ratio A_/A =30

— Compromise ratio with good vacuum performance
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Propulsion Mass Estimates
e Rocket Engine Thrust (each)

T(N) = mOi(T/ W) Z324.900 N

engines
e Rocket Engine Mass (each)
M, .. Engme(kg) =7.81x107%(324,900) +

3.37 x 107%(324,900)3/30 +59 = 373 kg

e Thrust Structure Mass

(kg)=12.55x%x107%(324,900) = 497 kg

M

Thrust Structure

@ UNIVERSITY OF Mass Estimating Relations
=)

M ARYL AND 28 ENAE 791 - Launch and Entry Vehicle Design



First Pass Vehicle Configuration

LH2

@
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Mass Summary - First Pass

Initial Inert Mass Estimate 12,240 kg
LOX Tank 1245 kg
LH2 Tank 2482 kg
LOX Insulation 119 kg
LH?2 Insulation 586 kg
Payload Fairing 645 kg
Intertank Fairing 1626 kg
Aft Fairing 1905 kg
Engines 2236 kg
Thrust Structure 497 kg
Gimbals 81 kg
Avionics 744 kg
Wiring 886 kg
Reserve -
Total Inert Mass 13,052 kg

gt UNIVE by gin M@s3 2 ¥mating Relations
: ;)/ M AR 30 ENAE 791 - Launch and Entry Vehicle Design



Modifications for Second Pass

o Keep all initial vehicle
sizing parameters constant

e Pick vehicle diameter and
make tanks cylindrical to

N | - R 2
ﬁt ' >_</32.1

¢ Redo MER analysis

18.217

\_|_/
; Y Y
€—6.916 —> €— 4 >
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Effect of Vehicle Diameter on Mass Margin
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Effect of Mass-Optimal Diameter Choice

e Mass-optimal vehicle has diameter=1.814 m
e Mass margin goes from -6.22% to +33.1%
e Vehicle length=155 m

o Length/diameter ratio=86 — approximately
equivalent to piece of spaghetti

e No volume for six rocket engines in aft fairing

e Infeasible configuration
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Effect of Diameter on Vehicle L/D
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Second Pass Vehicle Configuration
v A

18.217

\/' |

<€— 6.916 —>» €— 4 >
sy UNIVERSITY OF Mass Estimating Relations

: ))/ M ARYL AND 35 ENAE 791 - Launch and Entry Vehicle Design




Mass Summary - Second Pass
Initial Inert Mass Estimate 12,240 kg 12,240 kg

LOX Tank 1245kg 1245 kg
LH2 Tank 2482 kg 2482 kg
LOX Insulation 119 kg 56 kg
LH2 Insulation 586 kg 145 kg
Payload Fairing 645kg  402kg
Intertank Fairing 1626 kg 448 kg
Aft Fairing 1905 kg 579 kg
Engines 2236kg  2236kg
Thrust Structure 497 kg 497 kg
Gimbals 81 kg 81 kg
Avionics 744 kg 744 kg
Wiring 886kg 1044 kg
Reserve : -
Total Inert Mass 13,052kg 9960 kg
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Modifications for Iteration 3

A \ A
o Keep 4 m tank diameter
e Change initial assumption S
of 0 iteratively, with A
resulting changes in m, and
m,, to reach 30% mass <],
=
margin |
e Modity diameter to keep
L/D<10 and iterate again |
for optimal initial mass \/J 1 M
estimate I<—6.9I16—>I I<—4—>I I<—4—>I
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Vehicle-Level Prelim Design - 3rd Pass

o Single Stage to Orbit (SSTO) vehicle
o AV=9200 m/sec
e 5000 kg payload

— 7 — 0.1127

e LOX/LH2 propellants A=17r—3=0.0294
— Isp=430 sec

8 =% m/scc) Wi = TE — 169, 800 kg
- 0=0.08323

e Diameter=4.2 m M; = oM, = 14,130 kg

e L/D=9.7 M, = M,(1 —r) = 150, 700 kg
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Mass Summary - Third Pass

Initial Inert Mass Estimate 12,240 kg 12,240kg 14,130 kg

LOX Tank 1245kg  1245kg  1382kg
LH2 Tank 2482 kg 2482kg  2755kg
LOX Insulation 119 kg 56 kg 62 kg
LH2 Insulation 586 kg 145 kg 160 kg
Payload Fairing 645kg  402kg 427 kg
Intertank Fairing 1626 kg 448 kg 501 kg
Aft Fairing 1905 kg 579 kg 626 kg
Engines 2236 kg  2236kg 2443 kg
Thrust Structure 497 kg 497 kg 552 kg
Gimbals 81 kg 81 kg 90 kg
Avionics 744 kg 744 kg 773 kg
Wiring 886kg 1044kg 1101kg
Reserve - - -
Total Inert Mass 13,052kg 9960 kg 10,870 kg
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Mass Budgeting

Estimates Budgeted Margins
Initial Inert Mass Estimate 14,131 kg 14,131 kg

LOX Tank 1382kg 1589 kg 207 kg
LH2 Tank 2755kg 3168 kg 413 kg
LOX Insulation 62 kg 72 kg 9kg
LH2 Insulation 160 kg 184 kg 24 kg
Payload Fairing 427 kg 491 kg 64 kg
Intertank Fairing 501 kg 576 kg 75 kg
Aft Fairing 626 kg 720 kg 94 kg
Engines 2443 kg 2809 kg 366 kg
Thrust Structure 552 kg 634 kg 83 kg
Gimbals 90 kg 103 kg 13 kg
Avionics 773 kg 889 kg 116 kg
Wiring 1101 kg 1267 kg 165 kg
 Rese =R
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