Mass Estimating Relations

- Review of iterative design approach
- Mass Estimating Relations (MERs)
- Sample vehicle design analysis

Akin's Laws of Spacecraft Design - #3

Design is an iterative process. The necessary number of iterations is one more than the number you have currently done. This is true at any point in time.

Vehicle-Level Prelim Design - 1st Pass

- Single Stage to Orbit (SSTO) vehicle
- $\Delta V = 9200 \text{ m/sec}$
- 5000 kg payload
- LOX/LH2 propellants
 - Isp=430 sec (Ve=4214 m/sec)
 - $-\delta = 0.08$

$$r = e^{-\frac{\Delta V}{Ve}} = 0.1127$$

$$\lambda = r - \delta = 0.0327$$

$$M_o = \frac{M_\ell}{\lambda} = 153,000 \ kg$$

$$M_i = \delta M_o = 12,240 \ kg$$

$$M_p = M_o(1 - r) = 135,800 \ kg$$

System-Level Estimation

- Start with propellant tanks (biggest part)
- LOX/LH2 engines generally run at mixture ratio of 6:1 (by weight)
 - LH2: 19,390 kg
 - LOX: 116,400 kg
- Propellant densities

$$\rho_{LOX} = 1140 \; \frac{kg}{m^3}$$

$$\rho_{LH_2} = 71 \ \frac{kg}{m^3}$$

Propellant Tank Regression Data

Propellant Tank MERs (Volume)

• LH₂ tanks

$$M_{LH_2 Tank} \langle kg \rangle = 9.09 V_{LH_2} \langle m^3 \rangle$$

All other tanks

$$M_{Tank}\langle kg\rangle = 12.16V_{prop}\langle m^3\rangle$$

Propellant Tank MERs (Mass)

• LH₂ tanks

$$\rho_{LH_2} = 71 \frac{kg}{m^3} \Longrightarrow M_{LH_2} T_{ank} \langle kg \rangle = 0.128 M_{LH_2} \langle kg \rangle$$

LOX tanks

$$\rho_{LOX} = 1140 \frac{kg}{m^3} \Longrightarrow M_{LOX \ Tank} \langle kg \rangle = 0.0107 M_{LOX} \langle kg \rangle$$

• RP-1 tanks $\rho_{RP1} = 820 \frac{kg}{m^3} \Longrightarrow M_{RP1 \ Tank} \langle kg \rangle = 0.0148 M_{RP1} \langle kg \rangle$

Cryogenic Insulation MERs

$$M_{LH_2\ Insulation}\langle kg\rangle = 2.88A_{tank}\langle \frac{kg}{m^2}\rangle$$

$$M_{LOX\ Insulation} \langle kg \rangle = 1.123 A_{tank} \langle \frac{kg}{m^2} \rangle$$

LOX Tank Design

- Mass of LOX=116,400 kg $M_{LOX\ Tank} = 0.0107(116, 400) = 1245 \ kg$
- Need area to find LOX tank insulation mass assume a sphere

$$V_{LOX\ Tank} = \frac{M_{LOX}}{\rho_{LOX}} = 102.1\ m^3$$

$$r_{LOX\ Tank} = \left(\frac{V_{LOX}}{4\pi/3}\right)^{\frac{1}{3}} = 2.90\ m$$

$$r_{LOX\ Tank} = \left(\frac{V_{LOX}}{4\pi/3}\right)^{\frac{1}{3}} = 2.90\ m$$

$$A_{LOX\ Tank} = 4\pi r^2 = 105.6\ m^2$$

$$M_{LOX\ Insulation} = 1.123 \langle \frac{kg}{m^2} \rangle (105.6 \langle m^2 \rangle) = 119\ kg$$

LH₂ Tank Design

• Mass of $LH_2=19,390 \text{ kg}$

$$M_{LH_2 \ Tank} \langle kg \rangle = 0.128(19, 390) = 2482 \ kg$$

• Again, assume LH₂ tank is spherical

$$V_{LH_2 \ Tank} = \frac{M_{LH_2}}{\rho_{LH_2}} = 273.1 \ m^3$$

$$r_{LH_2 \ Tank} = \left(\frac{V_{LH_2}}{4\pi/3}\right)^{\frac{1}{3}} = 4.02 \ m$$

$$A_{LH_2 \ Tank} = 4\pi r^2 = 203.6 \ m^2$$

$$M_{LH_2\ Insulation} = 2.88 \langle \frac{kg}{m^2} \rangle (203.6 \langle m^2 \rangle) = 586\ kg$$

Current Design Sketch

Masses

LOX Tank	1245 kg
----------------------------	---------

 LOX Tank Insulation 	119 kg
---	--------

 LH₂ Tank 	2482 kg
—	

LH₂ Tank Insulation 586 kg

High-Pressure Gas Tanks

Pressurized Gas Tank MERs

• COPV (Composite Overwrapped Pressure Vessel)

$$M_{COPV\ Tank}(kg) = 115.3\ V_{contents}(m^3) + 3$$

• Titanium tank

$$M_{COPV\ Tank}(kg) = 299.8\ V_{contents}(m^3) + 2$$

Smaller Storable Liquids Tanks

Small Liquid Tankage MERs

Bare metal tanks

$$M_{Bare\ Tank}(kg) = 27.34\ V_{contents}(m^3) + 2$$

Tanks with propellant management devices

$$M_{PMD\ Tank}(kg) = 34.69\ V_{contents}(m^3) + 3$$

Titanium tanks with positive expulsion bladders

$$M_{Diaphragm\ Tank}(kg) = 71.17\ V_{contents}(m^3) + 3$$

Minimum Cost Lunar Architecture

Orbital Maneuvering Stage (OMS)

- Gross mass 6950 kg
 - Inert mass 695 kg
 - Propellant mass 6255 kg
 - Mixture ratio $N_2O_4/UDMH = 2.0$ (by mass)
- N_2O_4 tank
 - Mass = 4170 kg
 - Density = 1450 kg/m^3
 - Volume = 2.876 kg/m^3
- UDMH tank
 - Mass = 2085 kg
 - Density = 793 kg/m^3
 - Volume = 2.629 kg/m^3

N₂O₄ Tank Sizing

- Need total N_2O_4 volume = 2.876 m³
- Single PMD tank
 - Radius = 0.882 m
 - Mass = 102.8 kg
- Dual PMD tanks
 - Radius = 0.700 m
 - Mass = 52.9 kg (x2 = 105.8 kg)
- Triple PMD tanks
 - Radius = 0.612 m
 - Mass = 36.3 kg (x3 = 108.9 kg)

Tank Configuration Issues

Mass Estimating Relations ENAE 791 - Launch and Entry Vehicle Design

Other Structural MERs

Fairings and shrouds

$$M_{fairing}\langle kg\rangle = 4.95 \left(A_{fairing}\langle m^2\rangle\right)^{1.15}$$

Avionics

$$M_{avionics}\langle kg\rangle = 10 \left(M_o\langle kg\rangle\right)^{0.361}$$

Wiring

$$M_{wiring}\langle kg\rangle = 1.058\sqrt{M_o\langle kg\rangle}\ell^{0.25}$$

External Fairings - First Cut

$$A_{cone}=\pi r\sqrt{r^2+h^2}$$
 Payload Fairing $A_{frustrum}=\pi(r_1+r_2)\sqrt{(r_1-r_2)^2+h^2}$ Intertank Fairing LH2 r=4.02 m

External Fairings - First Cut

- Assumptions
 - − P/L fairing *h*
 - P/L fairing r
 - − I/T fairing *h*
 - I/T fairing r_1
 - I/T fairing r_2
 - Aft fairing h
 - Aft fairing *r*

Fairing Analysis

Payload Fairing

- Area 69.03 m²

Mass
 645 kg

Intertank Fairing

- Area 154.1 m²

Mass
 1624 kg

Aft Fairing

- Area 176.8 m²

- Mass 1902 kg

Avionics and Wiring Masses

Avionics

$$M_{avionics}\langle kg \rangle = 10 (153,000)^{0.361} = 744 \ kg$$

Wiring

$$M_{wiring}\langle kg \rangle = 1.058\sqrt{153,000}(21\ m)^{0.25} = 886\ kg$$

Propulsion MERs

• Liquid Pump-Fed Rocket Engine Mass

$$M_{Rocket\ Engine}(kg) = 7.81 \times 10^{-4} T(N) +$$

$$3.37 \times 10^{-5} T(N) \sqrt{\frac{A_e}{A_t}} + 59$$

Solid Rocket Motor

$$M_{Motor\ Casing} = 0.135 M_{propellants}$$

Thrust Structure Mass

$$M_{Thrust\ Structure}(kg) = 2.55 \times 10^{-4} T(N)$$

Propulsion MERs (continued)

Gimbal Mass

$$M_{Gimbals}(kg) = 237.8 \left[\frac{T(N)}{P_0(Pa)} \right]^{.9375}$$

• Gimbal Torque

$$\tau_{Gimbals}(N \cdot m) = 990,000 \left[\frac{T(N)}{P_0(Pa)} \right]^{1.25}$$

Propulsion System Assumptions

- Initial T/mg ratio = 1.3
 - Keeps final acceleration low with reasonable throttling
- Number of engines = 6
 - Positive acceleration worst-case after engine out
- Chamber pressure = 10000 psi = 6897 kN
 - Typical for high-performance LOX/LH2 engines
- Expansion ratio $A_e/A_t=30$
 - Compromise ratio with good vacuum performance

Propulsion Mass Estimates

Rocket Engine Thrust (each)

$$T(N) = \frac{m_0 g(T/W)_0}{n_{engines}} = 324,900 N$$

Rocket Engine Mass (each)

$$M_{Rocket\ Engine}(kg) = 7.81 \times 10^{-4}(324,900) +$$

 $3.37 \times 10^{-5}(324,900)\sqrt{30} + 59 = 373\ kg$

• Thrust Structure Mass

$$M_{Thrust\ Structure}(kg) = 2.55 \times 10^{-4}(324,900) = 497\ kg$$

First Pass Vehicle Configuration

Mass Summary - First Pass

Initial Inert Mass Estimate	12,240 kg
LOX Tank	1245 kg
LH2 Tank	2482 kg
LOX Insulation	119 kg
LH2 Insulation	586 kg
Payload Fairing	645 kg
Intertank Fairing	1626 kg
Aft Fairing	1905 kg
Engines	2236 kg
Thrust Structure	497 kg
Gimbals	81 kg
Avionics	744 kg
Wiring	886 kg
Reserve	
Total Inert Mass	13,052 kg
JERSITY OF	M6 a Tallon at

30

UNIVE DESIGN Wargin
MARY LAND

Mas 2 2 % mating Relations ENAE 791 - Launch and Entry Vehicle Design

Modifications for Second Pass

- Keep all initial vehicle sizing parameters constant
- Pick vehicle diameter and make tanks cylindrical to fit
- Redo MER analysis

Effect of Vehicle Diameter on Mass Margin

Effect of Mass-Optimal Diameter Choice

- Mass-optimal vehicle has diameter=1.814 m
- Mass margin goes from -6.22% to +33.1%
- Vehicle length=155 m
- Length/diameter ratio=86 approximately equivalent to piece of spaghetti
- No volume for six rocket engines in aft fairing
- Infeasible configuration

Effect of Diameter on Vehicle L/D

Second Pass Vehicle Configuration

Mass Summary - Second Pass

	Initial Inert Mass Estimate	12,240 kg	12,240 kg
	LOX Tank	1245 kg	1245 kg
	LH2 Tank	2482 kg	2482 kg
	LOX Insulation	119 kg	56 kg
	LH2 Insulation	586 kg	145 kg
	Payload Fairing	645 kg	402 kg
	Intertank Fairing	1626 kg	448 kg
	Aft Fairing	1905 kg	579 kg
	Engines	2236 kg	2236 kg
	Thrust Structure	497 kg	497 kg
	Gimbals	81 kg	81 kg
	Avionics	744 kg	744 kg
	Wiring	886 kg	1044 kg
	Reserve		
	Total Inert Mass	13,052 kg	9960 kg
N	The Ears ME York F	-6 22 %	4M289F94ir

-6.22 % + 122s9E mating Relations ENAE 791 - Launch and Entry Vehicle Design

Modifications for Iteration 3

- Keep 4 m tank diameter
- Change initial assumption of δ iteratively, with resulting changes in m₀ and m_i, to reach 30% mass margin
- Modify diameter to keep L/D≤10 and iterate again for optimal initial mass estimate

Vehicle-Level Prelim Design - 3rd Pass

- Single Stage to Orbit (SSTO) vehicle
- $\Delta V = 9200 \text{ m/sec}$
- 5000 kg payload
- LOX/LH2 propellants
 - Isp=430 sec (Ve=4214 m/sec)
 - $-\delta = 0.08323$
- Diameter=4.2 m
- L/D=9.7

$$r = e^{-\frac{\Delta V}{Ve}} = 0.1127$$

$$\lambda = r - \delta = 0.0294$$

$$M_o = \frac{M_\ell}{\lambda} = 169,800 \ kg$$

$$M_i = \delta M_o = 14,130 \ kg$$

$$M_p = M_o(1 - r) = 150,700 \ kg$$

Mass Summary - Third Pass

Initial Inert Mass Estimate	12,240 kg	12,240 kg	14,130 kg
LOX Tank	1245 kg	1245 kg	1382 kg
LH2 Tank	2482 kg	2482 kg	2755 kg
LOX Insulation	119 kg	56 kg	62 kg
LH2 Insulation	586 kg	145 kg	160 kg
Payload Fairing	645 kg	402 kg	427 kg
Intertank Fairing	1626 kg	448 kg	501 kg
Aft Fairing	1905 kg	579 kg	626 kg
Engines	2236 kg	2236 kg	2443 kg
Thrust Structure	497 kg	497 kg	552 kg
Gimbals	81 kg	81 kg	90 kg
Avionics	744 kg	744 kg	773 kg
Wiring	886 kg	1044 kg	1101 kg
Reserve			
Total Inert Mass	13,052 kg	9960 kg	10,870 kg
Design Margin Y OF	-6.22 %		Estimon On & Relations
MARYLAND 39	ENAE 79 1	l - Launch and	l Entry Vehicle Design

Mass Budgeting

	Estimates	Budgeted	Margins	
Initial Inert Mass Estimate	14,131 kg	14,131 kg		
LOX Tank	1382 kg	1589 kg	207 kg	
LH2 Tank	2755 kg	3168 kg	413 kg	
LOX Insulation	62 kg	72 kg	9 kg	
LH2 Insulation	160 kg	184 kg	24 kg	
Payload Fairing	427 kg	491 kg	64 kg	
Intertank Fairing	501 kg	576 kg	75 kg	
Aft Fairing	626 kg	720 kg	94 kg	
Engines	2443 kg	2809 kg	366 kg	
Thrust Structure	552 kg	634 kg	83 kg	
Gimbals	90 kg	103 kg	13 kg	
Avionics	773 kg	889 kg	116 kg	
Wiring	1101 kg	1267 kg	165 kg	
Reserve UNIVERSITY OF		1630 kg		
UNIVERSITY OF MARYLAND 40	ENAE 791 -		Estimating Rela Entry Vehicle D	

References

- C. R. Glatt, WAATS A Computer Program for Weights Analysis of Advanced Transportation Systems NASA CR-2420, September 1974.
- I. O. MacConochie and P. J. Klich, *Techniques for the Determination of Mass Properties of Earth-to-Orbit Transportation Systems* NASA TM-78661, June 1978.
- Willie Heineman, Jr., Fundamental Techniques of Weight Estimating and Forecasting for Advanced Manned Spacecraft and Space Stations NASA TN-D-6349, May 1971
- Willie Heineman, Jr., Mass Estimation and Forecasting for Aerospace Vehicles Based on Historical Data NASA JSC-26098, November 1994

