Orbital Mechanics

- Planetary launch and entry overview
- Energy and velocity in orbit
- Elliptical orbit parameters
- Orbital elements
- Coplanar orbital transfers
- Noncoplanar transfers
- Time in orbit
- Interplanetary trajectories

© 2024 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Orbital Mechanics: 500 years in 40 min.

• Newton's Law of Universal Gravitation

Newton's First Law meets vector algebra

 $F = \frac{Gm_1m_2}{r^2}$

Relative Motion Between Two Bodies

 $\dot{F}_{12} =$ force due to body 1 on body 2

 $m_1 \frac{d^2 \vec{r}_1}{dt^2} = G \frac{m_1 m_2}{\left| \vec{r}_{21} \right|^2} \frac{\vec{r}_{21}}{\left| \vec{r}_{21} \right|}$

$$\frac{m_1 m_2}{\left|\vec{r}_{21}\right|^3} \vec{r}_{21} = G \frac{m_1 m_2}{\left|\vec{r}_{21}\right|^3} \left(\vec{r}_2 - \vec{r}_1\right)$$

$$\frac{d^2 \vec{r}_2}{dt^2} = G \frac{m_1 m_2}{\left| \vec{r}_{12} \right|^3} \left(\vec{r}_1 - \vec{r}_2 \right)$$

Gravitational Motion

Let $r = |\vec{r}_{12}| = |\vec{r}_2|$

 $\frac{d^2 \vec{r}}{dt^2} = \frac{G}{r^3} \left[m_2 \left(-\vec{r} \right) - \vec{r} \right]$

Let $\mu =$

"Equation of Orbit" -Orbital motion is simple harmonic motion

4

Let
$$\vec{r} = \vec{r_1} - \vec{r_2}$$

$$m_1(\vec{r}) = \frac{-G}{r^3} (m_1 + m_2) \vec{r}$$

$$G(m_1 + m_2)$$

$$-\mu \frac{\vec{r}}{r^3} = \vec{0}$$

Orbital Angular Momentum

$$\vec{v} = \frac{d\vec{r}}{dt} \quad \frac{d\vec{v}}{dt} + \mu \frac{\vec{r}}{r^3}$$
$$\vec{r} \times \frac{d\vec{v}}{dt} + \frac{\mu}{r^3} (i)$$
$$\frac{d}{dt} (\vec{r} \times \vec{v}) = \frac{d\vec{r}}{dt} \times \vec{v} + \vec{r}$$

$$\frac{d}{dt} (\vec{r} \times \vec{v}) = \vec{0} \qquad \vec{r} \times \vec{v}$$
$$\vec{h} \text{ is angular moment} \\ \vec{r} \text{ and } \vec{v} \text{ are i}$$

 $\vec{s} = \vec{0}$

5

 $\frac{\frac{i}{3}}{\left(\vec{r}\times\vec{r}\right)} = \vec{0} \qquad \vec{r}\times\frac{d\vec{v}}{dt} = \vec{0}$ $+\vec{r}\times\frac{d\vec{v}}{dt}$ $= \vec{v}\times\vec{v}+\vec{r}\times\frac{d\vec{v}}{dt} = \vec{r}\times\frac{d\vec{v}}{dt} = \vec{0}$

 $\vec{v} = constant$ $\vec{r} \times \vec{v} = \vec{h}$ tum vector (constant) \Longrightarrow in a constant plane

Fun and Games with Algebra

$$\frac{d\vec{v}}{dt} + \mu \frac{\vec{r}}{r^3} = \vec{0} \qquad \frac{d\vec{v}}{dt} \times \vec{h} + \frac{\mu}{r^3} \left(\vec{r} \times \vec{h} \right) = \vec{0}$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h} \right) = \frac{d\vec{v}}{dt} \times \vec{h} + \vec{v} \times \frac{d\vec{h}}{dt}$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h} \right) = -\frac{\mu}{r^3} \left(\vec{r} \times \vec{h} \right) = -\frac{\mu}{r^3} \left(\vec{r} \times \vec{r} \times \vec{v} \right)$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h} \right) = -\frac{\mu}{r^3} \left[\left(\vec{r} \cdot \vec{v} \right) \vec{r} - \left(\vec{r} \cdot \vec{r} \right) \vec{v} \right]$$

$$\vec{r} \cdot \vec{v} = rv \cos \gamma = r \frac{dr}{dt}$$

6

More Algebra, More Fun

$$\frac{d}{dt}\left(\vec{v}\times\vec{h}\right) = -\frac{d}{dt}\left(\vec{r}\cdot\vec{r}\right) = \frac{\left(r\frac{d\vec{r}\cdot\vec{r}}{dt} - \vec{r}\cdot\vec{r}\right)}{r^2}$$
$$\frac{d}{dt}\left(\vec{v}\times\vec{h}\right) = -\mu\left(\frac{1}{r^2}\cdot\vec{r}\cdot\vec{r}\cdot\vec{r}\right)$$

$$\frac{d}{dt} \left(\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r} \right) = \vec{0}$$

7

 $-\frac{\mu}{r^3} \left| r \frac{dr}{dt} \vec{r} - r^2 \frac{d\vec{r}}{dt} \right|$ $\frac{\vec{r}\frac{dr}{dt}}{r} = \left(\frac{1}{r}\frac{d\vec{r}}{dt} - \frac{\vec{r}}{r^2}\frac{dr}{dt}\right)$ $\frac{dr}{dt}\vec{r} - \frac{1}{r}\frac{d\vec{r}}{dt} = \mu \frac{d}{dt}\left(\frac{\vec{r}}{r}\right)$

Orientation of the Orbit

$$\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r} = \text{constant}$$
 $\vec{v} \times \vec{h} - \mu \frac{\vec{r}}{r} = \mu \vec{e}$

$$\vec{r} \cdot \vec{v} \times \vec{h} - \vec{r} \cdot \mu \frac{\vec{r}}{r} = \mu \left(\vec{r} \cdot \vec{e} \right)$$
$$\vec{r} \times \vec{v} \cdot \vec{h} - \mu \frac{\vec{r} \cdot \vec{r}}{r} = \mu r e \cos \theta$$

$$\vec{r} \cdot \vec{v} \times \vec{h} - \vec{r} \cdot \mu \frac{\vec{r}}{r} = \mu \left(\vec{r} \cdot \vec{e} \right)$$
$$\vec{r} \times \vec{v} \cdot \vec{h} - \mu \frac{\vec{r} \cdot \vec{r}}{r} = \mu r e \cos \theta$$

$$\vec{h} \cdot \vec{h} - \mu \frac{r^2}{r} = \mu r e \cos \theta$$

8

 $\vec{e} \equiv$ eccentricity vector, in orbital plane \vec{e} points in the direction of periapsis

Position in Orbit

 $h^2 - \mu r$

at $\theta = \pm \frac{\pi}{2}$; cos

$$= \mu r e \cos \theta$$
$$h^2 / \mu$$
$$+ e \cos \theta$$

9

θ = true anomaly: angular travel from perigee passage

$$\theta = 0; r = p \equiv h^2/\mu$$

Relating Velocity and Orbital Elements

 $\mu \vec{e} = \bar{v}$

$\mu \vec{e} \cdot \mu \vec{e} = \vec{v} \times \vec{h} \cdot \vec{v} \times \vec{h} -$

 $\mu^2 e^2 = v^2 h$

 $e^2 = \frac{v^2}{\mu}$

$$\vec{v} imes \vec{h} - \mu \frac{\vec{r}}{r}$$

$$2\mu\left(\vec{v}\times\vec{h}\right)\cdot\frac{\vec{r}}{r}+\mu^2\left(\frac{\vec{r}\cdot\vec{r}}{r}\cdot\frac{\vec{r}}{r}\right)$$

$$h^2 - 2\mu \frac{h^2}{r} + \mu^2$$

$$\frac{p}{r} - 2\frac{p}{r} + 1$$

10

Vis-Viva Equation

 $p \equiv a(1 -$

 v^2 2

$$\equiv a(1-e^2) = \frac{1-e^2}{\frac{2}{r} - \frac{v^2}{\mu}}$$
$$a = \left(\frac{2}{r} - \frac{v^2}{\mu}\right)^{-1}$$

$$\left(\frac{2}{r} - \frac{1}{a}\right)$$

<--Vis-Viva Equation

 μ 2ar

11

M

$$\frac{\mu}{2a}$$
 <--Vis-Viva Equation

Implications of Vis-Viva

• Circular orbit (r=a)

• Relationship between circular and parabolic orbits $v_{escape} = \sqrt{2}v_{circular}$

 $v_{circular} = \sqrt{\frac{\mu}{r}}$

• Parabolic escape orbit (a tends to infinity) $v_{escape} = \sqrt{\frac{2\mu}{r}}$

Some Useful Constants

- Gravitation constant $\mu = GM$
 - Earth: 398,604 km³/sec²
 - Moon: 4667.9 km³/sec²
 - Mars: 42,970 km³/sec²
 - Sun: 1.327x10¹¹ km³/sec²
- Planetary radii
 - $r_{Earth} = 6378 \text{ km}$
 - $r_{Moon} = 1738 \text{ km}$
- $r_{Mars} = 3393 \text{ km}$ $\overrightarrow{\text{UNIVERSITYOF}}$ $\overrightarrow{\text{MARYLAND}}$

Classical Parameters of Elliptical Orbits

Basic Orbital Parameters

• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

- Periapse and apoapse distances
 - $r_p = a(1-e)$
- Angular momentum
 - $\vec{h} = \vec{r} \times \vec{v}$

parameter) $p = a(1 - e^2)$ tion of orbital position $r = \frac{p}{1 + e \cos \theta}$ distances

$$r_a = a(1+e)$$

$$h = \sqrt{\mu p}$$

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

- Ω : longitude of the ascending node
- ω : argument of periapsis
- $\widehat{\omega} = \Omega + \omega$: longitude of periapsis
- f: true anomaly
- $L = \widetilde{\omega} + f$: true longitude

The Hohmann Transfer

First Maneuver Velocities

Initial vehicle velocity

Needed final velocity

• Required ΔV

 $v_1 = \sqrt{\frac{\mu}{r_1}}$ $v_{perigee} = \sqrt{\frac{\mu}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2}}$ $\Delta v_1 = \sqrt{\frac{\mu}{r_1}} \left(\sqrt{\frac{2r_2}{r_1 + r_2}} - 1 \right)$

Second Maneuver Velocities

Initial vehicle velocity

Needed final velocity

• Required ΔV

 $v_{apogee} = \sqrt{\frac{\mu}{r_2}} \sqrt{\frac{2r_1}{r_1 + r_2}}$

 $v_2 = \sqrt{\frac{\mu}{r_2}}$

$$\Delta v_2 = \sqrt{\frac{\mu}{r_2}} \left(1 - \sqrt{\frac{2r_1}{r_1 + r_2}} \right)$$

Orbital Mechanics ENAE 791 – Launch and Entry Vehicle Design

12

Limitations on Launch Inclinations

Differences in Inclination

Choosing the Wrong Line of Apsides

Simple Plane Change

Optimal Plane Change

First Maneuver with Plane Change Δi_1

Initial vehicle velocity

Needed final velocity

• Required ΔV

 $v_1 = \sqrt{\frac{\mu}{r_1}}$ $v_p = \sqrt{\frac{\mu}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2}}$

 $\Delta v_1 = \sqrt{v_1^2 + v_p^2 - 2v_1v_p} \cos \Delta i_1$

26

Second Maneuver with Plane Change Δi_2

Initial vehicle velocity

Needed final velocity

• Required ΔV

 $v_a = \sqrt{\frac{\mu}{r_2}} \sqrt{\frac{2r_1}{r_1 + r_2}}$

 $v_2 = \sqrt{\frac{\mu}{r_2}}$

 $\Delta v_2 = \sqrt{v_2^2 + v_a^2 - 2v_2v_a} \cos \Delta i_2$

Sample Plane Change Maneuver

Optimum initial plane change = 2.20°

Geo Transfer Orbit – Practical Considerations

- Most launches of geosynchronous communications satellites GEO altitude at apogee
- (more common lately) electric propulsion
- and mission implications of LV vs. payload maneuvers

are to geo transfer orbit (GTO) – ideally elliptical trajectory to

• Launch vehicle performs the perigee burn; satellite performs apogee circularization with apogee kick motor (AKM) or

• Optimization must take into account different performance

Geo Transfer Orbit – Accommodations

- Typical maneuver: inject into LEO parking orbit and perform GTO injection when passing equator
- If the payload is slightly larger than the launch vehicle capability, can inject into a lower apogee and make up difference with satellite propulsion
- If the launch vehicle has extra margin, can inject into a super synchronous orbit to reduce satellite Δv requirements
- Some LVs can offer "GEO direct" upper stage stays active with propellant to perform circularization UNIVERSITY OF MARYLAND

Calculating Time in Orbit

Time in Orbit • Period of an orbit

Mean motion (average angul)

 \mathcal{N} =

Time since pericenter passage

► M=mean anomaly

$$P = 2\pi \sqrt{\frac{a^3}{\mu}}$$
sage

$M = nt = E - e\sin E$

Dealing with the Eccentric Anomaly Relationship to orbit

Relationship to true anomaly

Calculating M from time interval: iterate until it converges

$r = a \left(1 - e \cos E \right)$

 $\tan\frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2}$

 $E_{i+1} = nt + e\sin E_i$

Example: Time in Orbit

- Hohmann transfer from LEO to GEO
 - $-h_1=300 \text{ km} -> r_1=6378+300=6678 \text{ km}$
 - $-r_2 = 42240 \text{ km}$
- Time of transit (1/2 orbital period)

 $a = \frac{1}{2}(r_1 + r_2) = 24,459 \ km$

$$t_{transit} = \frac{P}{2} = \pi \sqrt{\frac{a^3}{\mu}}$$

$- = 19,034 \ sec = 5h17m14s$

Example: Time-based Position Find the spacecraft position 3 hours after perigee

$E_{i+1} = nt + e \sin E_i = 1.783 + 0.7270 \sin E_i$

2.318; 2.317; 2.317; 2.317

 $n = \sqrt{\frac{\mu}{a^3}} = 1.650 \times 10^{-4} \frac{rad}{sec}$ $e = 1 - \frac{r_p}{a} = 0.7270$

E=0; 1.783; 2.494; 2.222; 2.361; 2.294; 2.328; 2.311; 2.320; 2.316;

Example: Time-based Position (cont.)

E = 2.317

- reach apogee $--> 0^{\circ} < \theta < 180^{\circ}$

$$\tan\frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}}$$

 $r = a(1 - e\cos E) = 12,387$ km

Have to be sure to get the position in the proper quadrant - since the time is less than 1/2 the period, the spacecraft has yet to

 $\tan\frac{E}{2} \Longrightarrow \theta = 160 \text{ deg}$

Velocity Components in Orbit $r = \frac{p}{1 + e\cos\theta}$ $v_r = \frac{dr}{dt} = \frac{d}{dt} \left(\frac{p}{1+e\cos\theta}\right) = \frac{-p(-e\sin\theta\frac{d\theta}{dt})}{(1+e\cos\theta)^2}$ $v_r = \frac{pe\sin\theta}{(1+e\cos\theta)^2} \frac{d\theta}{dt}$ $1 + e\cos\theta = \frac{p}{r} \Rightarrow v_r = \frac{r^2 \frac{d\theta}{dt} e\sin\theta}{p}$ $\overrightarrow{h} = \overrightarrow{r} \times \overrightarrow{v}$

Velocity Components in Orbit (cont.)

$$h = \vec{r} \times \vec{v} \qquad h = rv$$

$$v_r = \frac{r^2 \frac{d\theta}{dt} e \sin \theta}{p} =$$

$$v_r = \sqrt{v_r}$$

$$v_\theta = r \frac{d\theta}{dt} = r \frac{h}{r^2} = \frac{h}{r} =$$

$$\tan \gamma = \frac{v_r}{v_\theta}$$

Patched Conics

- Simple approximation to multi-body motion (e.g., traveling from Earth orbit through solar orbit into Martian orbit)
- --> reduces analysis to sequential two-body problems calculation. Results will be accurate to a few percent, which is
 - adequate at this level of design analysis.

• Treats multibody problem as "hand-offs" between gravitating bodies • Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here is a very simple, convenient, and not altogether accurate method for performing this

Planetary Approach Analysis • Spacecraft has v_h hyperbolic excess velocity, which fixes total energy of approach orbit v^2 • Vis-viva provides velocity of

v = v

 Choose transfer orbit such that approach is tangent to desired final orbit at periapse $\Delta v =$

U

$$= -\frac{\mu}{2a} = \frac{v_h^2}{2}$$

$$\frac{proach}{\sqrt{v_h^2 + \frac{2\mu}{r}}}$$

$$\frac{2}{h} + \frac{2\mu}{r} - \sqrt{\frac{\mu}{r}}$$

Orbital Mechanics ENAE 791 – Launch and Entry Vehicle Design

40

Interplanetary Trajectory Types

"Short-Stay" ("Opposition-Class")

"Long-Stay" ("Conjunction-Class")

Interplanetary "Pork Chop" Plots

UNIVERSITY OF MARYLAND

- Summarize a number of critical parameters
 - Date of departure
 - Date of arrival
 - Hyperbolic energy ("C3" = v_h^2)
 - Transfer geometry
- Launch vehicle determines available C3 based on window, payload mass
- Calculated using Lambert's Theorem

C3 for Earth-Mars Transfer 1990-2045

UNIVERSITY OF MARYLAND

Earth-Mars Transfer 2033

		and the second se				
Mission	Earth departure date	Mars arrival date	C ₃	Right ascension	Declination	Mars arrival excess speed
type	(m/d/yr)	(m/d/yr)	(km^2/sec^2)	(deg)	(deg)	(km/s)
Type 1	4/6/33	10/1/33	8.412	271	-54.9	3.956
Type 2	4/28/33	1/27/34	7.781	311.4	-11.2	4.377
Type 1	4/20/33	11/6/33	9.266	267.1	-53.2	3.311
Type 2	1/26/33	10/17/33	17.78	278.3	-2.53	3.831
	4/11/3 2/20/3 and poor 1/1/3 11/12/3 9/23/3 8/4/3 12		12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14	10 10 4/6/33 4/26/33 Date	30 25 20 10 5/16/33 6/5/33	

Orbital Mechanics ENAE 791 – Launch and Entry Vehicle Design

44

Earth-Mars Transfer 2037

Mission	Earth departure date	Mars arrival date	C ₃	Right ascension	Declination	Mars arrival excess speed			
type	(m/d/yr)	(m/d/yr)	$(\mathrm{km}^{2}/\mathrm{sec}^{2})$	(deg)	(deg)	(km/s)			
Type 1	6/2/37	12/17/37	17.07	43.45	39.79	3.344			
Type 2	6/18/37	7/19/38	14.84	74.97	13.59	3.356			
Type 1	6/30/37	2/19/38	28.33	26.54	32.34	2.334			
Type 2	4/13/37	2/7/38	31.13	66.88	1.891	2.422			
10/6/38 6/17/38 6/2/6/7 6/2/2/7 6/1/2/7 7/2/397 7/2/397 8/1/2/7 9/1/37 9/2/1/37 10/11/									

Interplanetary Delta-V

46

Hyperbolic excess velocity $\equiv V_h$ $C_{3} = V_{h}^{2}$ $V_{req} = \sqrt{V_{esc}^2 + C_3}$ $\Delta V = \sqrt{V_{esc}^2 + C_3 - V_c}$ 2033 Window: $\Delta V = 3.55 \ km/sec$ 2037 Window: $\Delta V = 3.859 \ km/sec$ ΔV in departure from 300 km LEO

Free-Body Diagram with Spherical Planet

r

γ = flight path angle ω = rotational velocity of \bar{v}

Orbital Mechanics ENAE 791 – Launch and Entry Vehicle Design

 ω

g

Orbital Planar State Equations

r

Inertial angular velocity

$$\omega = \dot{\gamma} - \dot{\theta}$$

Sum of accelerations normal to velocity vector

 $-g\cos\gamma = \omega v$

Sum of accelerations perpendicular to velocity vector

$$-g\sin\gamma = \dot{v}$$

Orbital Planar State Equations (2)

UNIVERSITY OF MARYLAND

- $\dot{r} = v \sin \gamma$
- $r\dot{\theta} = v\cos\gamma$

$$\omega = \dot{\gamma} - \dot{\theta} = \dot{\gamma} - \frac{v}{r}\cos\gamma$$

$$-g\cos\gamma = \left(\dot{\gamma} - \frac{v}{r}\cos\gamma\right)v$$

$$-\left(g - \frac{v^2}{r}\right)\cos\gamma = \dot{\gamma}v$$

$$g\cos\gamma = \dot{\gamma}v$$

Orbital Mechanics ENAE 791 – Launch and Entry Vehicle Design

 v^2 `

rg

Canonical Orbital Planar State Equations

Coupled first-order ODEs $g = g_o \left(\frac{r_o}{r}\right)^2$

$$\left(-\frac{v^2}{v_c^2}\right)g\cos\gamma$$

 $\dot{v} = -g\sin\gamma$

 $\dot{r} = v \sin \gamma$

$$\frac{v}{r}\cos\gamma$$

Numerical Integration - 4th Order R-K

Given a series of equations $\dot{\bar{y}} = \bar{f}(t, \bar{x})$ $\bar{k_1} = \Delta t \ \bar{f}(t_n, \bar{y_n})$

 $\bar{k_2} = \Delta t \ \bar{f} \left(t \right)$

 $\bar{k_3} = \Delta t \ \bar{f} \left(t \right)$

 $\bar{k_4} = \Delta t \ \bar{f} \left(t \right)$ $\bar{y}_{n+1} = \bar{y}_n + \frac{\bar{k}_1}{c} +$ 6

$$t_n + \frac{\Delta t}{2}, \bar{y_n} + \frac{k_1}{2})$$

$$t_n + \frac{\Delta t}{2}, \bar{y_n} + \frac{\bar{k_2}}{2})$$

$$\frac{k_n + \Delta t, \bar{y_n} + \bar{k_3}}{3} + \frac{\bar{k_3}}{3} + \frac{\bar{k_4}}{6} + O(\Delta t^5)$$

References for This Lecture

- Wernher von Braun, The Mars Project University of Illinois Press, 1962
- Publications, 1986

- J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

• William Tyrrell Thomson, Introduction to Space Dynamics Dover

• Francis J. Hale, Introduction to Space Flight Prentice-Hall, 1994 • William E. Wiesel, Spaceflight Dynamics MacGraw-Hill, 1997

