Orbital Mechanics

- Planetary launch and entry overview
- Energy and velocity in orbit
- Elliptical orbit parameters
- Orbital elements
- Coplanar orbital transfers
- Noncoplanar transfers
- Time in orbit
- Interplanetary trajectories

Orbital Mechanics: 500 years in 40 min.

- Newton's Law of Universal Gravitation

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

- Newton's First Law meets vector algebra

$$
\vec{F}=m \vec{a}
$$

Relative Motion Between Two Bodies

$\vec{F}_{12}=$ force due to body 1 on body 2

Gravitational Motion

$$
\begin{gathered}
\text { Let } r=\left|\vec{r}_{12}\right|=\left|\vec{r}_{21}\right| \quad \text { Let } \vec{r}=\vec{r}_{1}-\vec{r}_{2} \\
\frac{d^{2} \vec{r}}{d t^{2}}=\frac{G}{r^{3}}\left[m_{2}(-\vec{r})-m_{1}(\vec{r})\right]=\frac{-G}{r^{3}}\left(m_{1}+m_{2}\right) \vec{r} \\
\text { Let } \mu=G\left(m_{1}+m_{2}\right) \\
\frac{d^{2} \vec{r}}{d t^{2}}+\mu \frac{\vec{r}}{r^{3}}=\overrightarrow{0}
\end{gathered}
$$

"Equation of Orbit" -
Orbital motion is simple harmonic motion

Orbital Angular Momentum

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \quad \frac{d \vec{v}}{d t}+\mu \frac{\vec{r}}{r^{3}}=\overrightarrow{0} \\
& \vec{r} \times \frac{d \vec{v}}{d t}+\frac{\mu}{r^{3}}(\vec{r} \times \vec{r})=\overrightarrow{0} \quad \vec{r} \times \frac{d \vec{v}}{d t}=\overrightarrow{0} \\
& \frac{d}{d t}(\vec{r} \times \vec{v})=\frac{d \vec{r}}{d t} \times \vec{v}+\vec{r} \times \frac{d \vec{v}}{d t} \\
& =\vec{v} \times \vec{v}+\vec{r} \times \frac{d \vec{v}}{d t}=\vec{r} \times \frac{d \vec{v}}{d t}=\overrightarrow{0} \\
& \frac{d}{d t}(\vec{r} \times \vec{v})=\overrightarrow{0} \quad \vec{r} \times \vec{v}=\text { constant } \quad \vec{r} \times \vec{v}=\vec{h} \\
& \vec{r} \text { and } \vec{v} \text { are in a constant plane }
\end{aligned}
$$

Fun and Games with Algebra

$$
\begin{gathered}
\frac{d \vec{v}}{d t}+\mu \frac{\vec{r}}{r^{3}}=\overrightarrow{0} \quad \frac{d \vec{v}}{d t} \times \vec{h}+\frac{\mu}{r^{3}}(\vec{r} \times \vec{h})=\overrightarrow{0} \\
\frac{d}{d t}(\vec{v} \times \vec{h})=\frac{d \vec{v}}{d t} \times \vec{h}+\vec{v} \times \frac{d \vec{h}}{d t} \\
\frac{d}{d t}(\vec{v} \times \vec{h})=-\frac{\mu}{r^{3}}(\vec{r} \times \vec{h})=-\frac{\mu}{r^{3}}(\vec{r} \times \vec{r} \times \vec{v}) \\
\frac{d}{d t}(\vec{v} \times \vec{h})=-\frac{\mu}{r^{3}}[(\vec{r} \cdot \vec{v}) \vec{r}-(\vec{r} \cdot \vec{r}) \vec{v}] \\
\vec{r} \cdot \vec{v}=r v \cos \gamma=r \frac{d r}{d t}
\end{gathered}
$$

More Algebra, More Fun

$$
\begin{gathered}
\frac{d}{d t}(\vec{v} \times \vec{h})=-\frac{\mu}{r^{3}}\left[r \frac{d r}{d t} \vec{r}-r^{2} \frac{d \vec{r}}{d t}\right] \\
\frac{d}{d t}\left(\frac{\vec{r}}{r}\right)=\frac{\left(r \frac{d \vec{r}}{d t}-\vec{r} \frac{d r}{d t}\right)}{r^{2}}=\left(\frac{1}{r} \frac{d \vec{r}}{d t}-\frac{\vec{r}}{r^{2}} \frac{d r}{d t}\right) \\
\frac{d}{d t}(\vec{v} \times \vec{h})=-\mu\left(\frac{1}{r^{2}} \frac{d r}{d t} \vec{r}-\frac{1}{r} \frac{d \vec{r}}{d t}\right)=\mu \frac{d}{d t}\left(\frac{\vec{r}}{r}\right) \\
\frac{d}{d t}\left(\vec{v} \times \vec{h}-\mu \frac{\vec{r}}{r}\right)=\overrightarrow{0}
\end{gathered}
$$

Orientation of the Orbit

$$
\begin{gathered}
\vec{v} \times \vec{h}-\mu \frac{\vec{r}}{r}=\text { constant } \quad \vec{v} \times \vec{h}-\mu \frac{\vec{r}}{r}=\mu \vec{e} \\
\vec{e} \equiv \text { eccentricity vector, in orbital plane } \\
\vec{e} \text { points in the direction of periapsis } \\
\vec{r} \cdot \vec{v} \times \vec{h}-\vec{r} \cdot \mu \frac{\vec{r}}{r}=\mu(\vec{r} \cdot \vec{e}) \\
\vec{r} \times \vec{v} \cdot \vec{h}-\mu \frac{\vec{r} \cdot \vec{r}}{r}=\mu r e \cos \theta \\
\vec{h} \cdot \vec{h}-\mu \frac{r^{2}}{r}=\mu r e \cos \theta
\end{gathered}
$$

Position in Orbit

$$
\begin{gathered}
h^{2}-\mu r=\mu r e \cos \theta \\
r=\frac{h^{2} / \mu}{1+e \cos \theta}
\end{gathered}
$$

$\theta=$ true anomaly: angular travel from perigee passage

$$
\text { at } \theta= \pm \frac{\pi}{2} ; \cos \theta=0 ; r=p \equiv h^{2} / \mu
$$

Relating Velocity and Orbital Elements

$$
\begin{gathered}
\mu \vec{e}=\vec{v} \times \vec{h}-\mu \frac{\vec{r}}{r} \\
\mu \vec{e} \cdot \mu \vec{e}=\vec{v} \times \vec{h} \cdot \vec{v} \times \vec{h}-2 \mu(\vec{v} \times \vec{h}) \cdot \frac{\vec{r}}{r}+\mu^{2}\left(\frac{\vec{r}}{r} \cdot \frac{\vec{r}}{r}\right) \\
\mu^{2} e^{2}=v^{2} h^{2}-2 \mu \frac{h^{2}}{r}+\mu^{2} \\
e^{2}=\frac{v^{2}}{\mu} p-2 \frac{p}{r}+1
\end{gathered}
$$

Vis-Viva Equation

$$
\begin{gathered}
p \equiv a\left(1-e^{2}\right)=\frac{1-e^{2}}{\frac{2}{r}-\frac{v^{2}}{\mu}} \\
a=\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)^{-1} \\
v^{2}=\mu\left(\frac{2}{r}-\frac{1}{a}\right)<--V i s-V i v a \text { Equation } \\
\frac{v^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}
\end{gathered}
$$

Energy in Orbit

- Kinetic Energy

$$
K . E .=\frac{1}{2} m v^{2} \Rightarrow \frac{K . E .}{m}=\frac{v^{2}}{2}
$$

- Potential Energv

$$
P . E .=-\frac{m \mu}{r} \Rightarrow \frac{P . E .}{m}=-\frac{\mu}{r}
$$

- Total Energy

$$
\text { Const. }=\frac{v^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}<- \text { Vis-Viva Equation }
$$

Implications of Vis-Viva

- Circular orbit (r=a)

$$
v_{\text {circular }}=\sqrt{\frac{\mu}{r}}
$$

- Parabolic escape orbit (a tends to infinity)

$$
v_{\text {escape }}=\sqrt{\frac{2 \mu}{r}}
$$

- Relationship between circular and parabolic orbits

$$
v_{\text {escape }}=\sqrt{2 v_{\text {circular }}}
$$

Some Useful Constants

- Gravitation constant $\mu=\mathrm{GM}$
- Earth: $398,604 \mathrm{~km}^{3} / \mathrm{sec}^{2}$
- Moon: 4667.9 km$/ \mathrm{sec}^{2}$
- Mars: $42,970 \mathrm{~km}^{3} / \mathrm{sec}^{2}$
- Sun: 1.327x1011 km ${ }^{3} / \mathrm{sec}^{2}$
- Planetary radii
- $\mathrm{r}_{\text {Earth }}=6378 \mathrm{~km}$
$-\mathrm{r}_{\text {Moon }}=1738 \mathrm{~km}$
$-\mathrm{r}_{\text {Mars }}=3393 \mathrm{~km}$

Classical Parameters of Elliptical Orbits

Basic Orbital Parameters

- Semi-latus rectum (or parameter)

$$
p=a\left(1-e^{2}\right)
$$

- Radial distance as function of orbital position

$$
r=\frac{p}{1+e \cos \theta}
$$

- Periapse and apoapse distances

$$
r_{p}=a(1-e) \quad r_{a}=a(1+e)
$$

- Angular momentum

$$
\vec{h}=\vec{r} \times \vec{v} \quad h=\sqrt{\mu p}
$$

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

The Hohmann Transfer

First Maneuver Velocities

- Initial vehicle velocity

$$
v_{1}=\sqrt{\frac{\mu}{r_{1}}}
$$

- Needed final velocity

$$
v_{\text {perigee }}=\sqrt{\frac{\mu}{r_{1}}} \sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}
$$

- Required $\Delta \mathrm{V}$

$$
\Delta v_{1}=\sqrt{\frac{\mu}{r_{1}}}\left(\sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}-1\right)
$$

Second Maneuver Velocities

- Initial vehicle velocity

$$
v_{\text {apogee }}=\sqrt{\frac{\mu}{r_{2}}} \sqrt{\frac{2 r_{1}}{r_{1}+r_{2}}}
$$

- Needed final velocity

$$
v_{2}=\sqrt{\frac{\mu}{r_{2}}}
$$

- Required $\Delta \mathrm{V}$

$$
\Delta v_{2}=\sqrt{\frac{\mu}{r_{2}}}\left(1-\sqrt{\frac{2 r_{1}}{r_{1}+r_{2}}}\right)
$$

Limitations on Launch Inclinations

Differences in Inclination

Orbital Mechanics

Choosing the Wrong Line of Apsides

Simple Plane Change

Optimal Plane Change

First Maneuver with Plane Change $\Delta \mathbf{i}_{1}$

- Initial vehicle velocity

$$
v_{1}=\sqrt{\frac{\mu}{r_{1}}}
$$

- Needed final velocity

$$
v_{p}=\sqrt{\frac{\mu}{r_{1}}} \sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}
$$

- Required $\Delta \mathrm{V}$

$$
\Delta v_{1}=\sqrt{v_{1}^{2}+v_{p}^{2}-2 v_{1} v_{p} \cos \Delta i_{1}}
$$

Second Maneuver with Plane Change $\Delta \mathrm{i}_{2}$

- Initial vehicle velocity

$$
v_{a}=\sqrt{\frac{\mu}{r_{2}}} \sqrt{\frac{2 r_{1}}{r_{1}+r_{2}}}
$$

- Needed final velocity

$$
v_{2}=\sqrt{\frac{\mu}{r_{2}}}
$$

- Required $\Delta \mathrm{V}$

$$
\Delta v_{2}=\sqrt{v_{2}^{2}+v_{a}^{2}-2 v_{2} v_{a} \cos \Delta i_{2}}
$$

Sample Plane Change Maneuver

Optimum initial plane change $=2.20^{\circ}$

Geo Transfer Orbit - Practical Considerations

- Most launches of geosynchronous communications satellites are to geo transfer orbit (GTO) - ideally elliptical trajectory to GEO altitude at apogee
- Launch vehicle performs the perigee burn; satellite performs apogee circularization with apogee kick motor (AKM) or (more common lately) electric propulsion
- Optimization must take into account different performance and mission implications of LV vs. payload maneuvers

Geo Transfer Orbit - Accommodations

- Typical maneuver: inject into LEO parking orbit and perform GTO injection when passing equator
- If the payload is slightly larger than the launch vehicle capability, can inject into a lower apogee and make up difference with satellite propulsion
- If the launch vehicle has extra margin, can inject into a super synchronous orbit to reduce satellite Δv requirements
- Some LVs can offer "GEO direct" - upper stage stays active with propellant to perform circularization

Calculating Time in Orbit

Orbital Mechanics

Time in Orbit

- Period of an orbit

$$
P=2 \pi \sqrt{\frac{a^{3}}{\mu}}
$$

- Mean motion (average angular velocity)
- Time since pericenter passage

$$
n=\sqrt{\frac{\mu}{a^{3}}}
$$

$$
M=n t=E-e \sin E
$$

$\Rightarrow \mathrm{M}=\mathrm{mean}$ anomaly

Dealing with the Eccentric Anomaly

- Relationship to orbit

$$
r=a(1-e \cos E)
$$

- Relationship to true anomaly

$$
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}
$$

- Calculating M from time interval: iterate until it converges

$$
E_{i+1}=n t+e \sin E_{i}
$$

Example: Time in Orbit

- Hohmann transfer from LEO to GEO
$-\mathrm{h}_{1}=300 \mathrm{~km} \mathrm{-->} \mathrm{r}_{1}=6378+300=6678 \mathrm{~km}$
$-\mathrm{r}_{2}=42240 \mathrm{~km}$
- Time of transit ($1 / 2$ orbital period)

$$
\begin{gathered}
a=\frac{1}{2}\left(r_{1}+r_{2}\right)=24,459 \mathrm{~km} \\
t_{\text {transit }}=\frac{P}{2}=\pi \sqrt{\frac{a^{3}}{\mu}}=19,034 \mathrm{sec}=5 \mathrm{~h} 17 \mathrm{~m} 14 \mathrm{~s}
\end{gathered}
$$

Example: Time-based Position

Find the spacecraft position 3 hours after perigee

$$
\begin{gathered}
n=\sqrt{\frac{\mu}{a^{3}}}=1.650 \times 10^{-4} \frac{\mathrm{rad}}{\mathrm{sec}} \\
e=1-\frac{r_{p}}{a}=0.7270 \\
E_{j+1}=n t+e \sin E_{j}=1.783+0.7270 \sin E_{j}
\end{gathered}
$$

$\mathrm{E}=0 ; 1.783 ; 2.494 ; 2.222 ; 2.361 ; 2.294 ; 2.328 ; 2.311 ; 2.320 ; 2.316$; 2.318; 2.317; 2.317; 2.317

Example: Time-based Position (cont.)

$$
\begin{gathered}
E=2.317 \\
r=a(1-e \cos E)=12,387 \mathrm{~km}
\end{gathered}
$$

Have to be sure to get the position in the proper quadrant - since the time is less than $1 / 2$ the period, the spacecraft has yet to reach apogee $-->0^{\circ}<\theta<180^{\circ}$

$$
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \Longrightarrow \theta=160 \mathrm{deg}
$$

Velocity Components in Orbit

$$
\begin{gathered}
r=\frac{p}{1+e \cos \theta} \\
v_{r}=\frac{d r}{d t}=\frac{d}{d t}\left(\frac{p}{1+e \cos \theta}\right)=\frac{-p\left(-e \sin \theta \frac{d \theta}{d t}\right)}{(1+e \cos \theta)^{2}} \\
v_{r}=\frac{p e \sin \theta}{(1+e \cos \theta)^{2}} \frac{d \theta}{d t} \\
1+e \cos \theta=\frac{p}{r} \Rightarrow v_{r}=\frac{r^{2} \frac{d \theta}{d t} e \sin \theta}{p} \\
\vec{h}=\vec{r} \times \vec{v}
\end{gathered}
$$

Velocity Components in Orbit (cont.)

$$
\begin{gathered}
\vec{h}=\vec{r} \times \vec{v} \quad h=r v \cos \gamma=r\left(r \frac{d \theta}{d t}\right)=r^{2} \frac{d \theta}{d t} \\
v_{r}=\frac{r^{2} \frac{d \theta}{d t} e \sin \theta}{p}=\frac{h e \sin \theta}{p}=\frac{\sqrt{p \mu}}{p} e \sin \theta \\
v_{r}=\sqrt{\frac{\mu}{p}} e \sin \theta \\
v_{\theta}=r \frac{d \theta}{d t}=r \frac{h}{r^{2}}=\frac{h}{r}=\frac{\sqrt{p \mu}}{r} v_{\theta}=\sqrt{\frac{\mu}{p}}(1+e \cos \theta) \\
\tan \gamma=\frac{v_{r}}{v_{\theta}}=\frac{e \sin \theta}{1+e \cos \theta}
\end{gathered}
$$

Patched Conics

- Simple approximation to multi-body motion (e.g., traveling from Earth orbit through solar orbit into Martian orbit)
- Treats multibody problem as "hand-offs" between gravitating bodies --> reduces analysis to sequential two-body problems
- Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here is a very simple, convenient, and not altogether accurate method for performing this calculation. Results will be accurate to a few percent, which is adequate at this level of design analysis.

Planetary Approach Analysis

- Spacecraft has v_{h} hyperbolic excess velocity, which fixes total energy of approach orbit

$$
\frac{v^{2}}{2}-\frac{\mu}{r}=-\frac{\mu}{2 a}=\frac{v_{h}^{2}}{2}
$$

- Vis-viva provides velocity of approach

$$
v=\sqrt{v_{h}^{2}+\frac{2 \mu}{r}}
$$

- Choose transfer orbit such that approach is tangent to desired final orbit at periapse

$$
\Delta v=\sqrt{v_{h}^{2}+\frac{2 \mu}{r}}-\sqrt{\frac{\mu}{r}}
$$

Interplanetary Trajectory Types

"Short-Stay" ("Opposition-Class")

MISSION TIMES Outbound -313 days Stay $\quad 40$ days Return $\quad 308$ days Total Mission 661 days
"Long-Stay" ("Conjunction-Class")

MISSION TIMES Outbound - 180 days Stay $\quad 545$ days Return 180 days Total Mission 905 days

Interplanetary "Pork Chop" Plots

EARTH TO MARS 2005 type 1,2
CZLIblue]. TTIME[red], SEP[green], Ls[magentol

- Summarize a number of critical parameters
- Date of departure
- Date of arrival
- Hyperbolic energy ("C3"= v_{h}^{2})
- Transfer geometry
- Launch vehicle determines available C3 based on window, payload mass
- Calculated using Lambert's Theorem

C3 for Earth-Mars Transfer 1990-2045

Earth-Mars Transfer 2033

Earth-Mars Transfer 2037

Interplanetary Delta-V

Hyperbolic excess velocity $\equiv V_{h}$

$$
\begin{gathered}
C_{3}=V_{h}^{2} \\
V_{r e q}=\sqrt{V_{e s c}^{2}+C_{3}} \\
\Delta V=\sqrt{V_{e s c}^{2}+C_{3}}-V_{c}
\end{gathered}
$$

2033 Window: $\Delta V=3.55 \mathrm{~km} / \mathrm{sec}$
2037 Window: $\Delta V=3.859 \mathrm{~km} / \mathrm{sec}$
ΔV in departure from 300 km LEO

Free-Body Diagram with Spherical Planet

$\gamma=$ flight path angle
$\omega=$ rotational velocity of \bar{v}

Orbital Planar State Equations

Inertial angular velocity

$$
\omega=\dot{\gamma}-\dot{\theta}
$$

Sum of accelerations normal to velocity vector

$$
-g \cos \gamma=\omega v
$$

Sum of accelerations perpendicular to velocity vector

$$
-g \sin \gamma=\dot{v}
$$

Orbital Planar State Equations (2)

$$
\begin{gathered}
\dot{r}=v \sin \gamma \\
r \dot{\theta}=v \cos \gamma \\
\omega=\dot{\gamma}-\dot{\theta}=\dot{\gamma}-\frac{v}{r} \cos \gamma \\
-g \cos \gamma=\left(\dot{\gamma}-\frac{v}{r} \cos \gamma\right) v \\
-\left(g-\frac{v^{2}}{r}\right) \cos \gamma=\dot{\gamma} v \\
-\left(1-\frac{v^{2}}{r g}\right) g \cos \gamma=\dot{\gamma} v
\end{gathered}
$$

Canonical Orbital Planar State Equations

$$
\begin{gathered}
\dot{\gamma}=-\frac{1}{v} \\
\left(1-\frac{v^{2}}{v_{c}^{2}}\right) g \cos \gamma \\
\dot{v}=-g \sin \gamma \\
\dot{r}
\end{gathered}=v \sin \gamma \quad \begin{aligned}
\dot{\theta} & =\frac{v}{r} \cos \gamma
\end{aligned}
$$

Coupled first-order ODEs

$$
g=g_{o}\left(\frac{r_{o}}{r}\right)^{2}
$$

Numerical Integration - 4th Order R-K

Given a series of equations $\quad \dot{\bar{y}}=\bar{f}(t, \bar{x})$

$$
\begin{gathered}
\overline{k_{1}}=\Delta t \bar{f}\left(t_{n}, \overline{y_{n}}\right) \\
\overline{k_{2}}=\Delta t \bar{f}\left(t_{n}+\frac{\Delta t}{2}, \overline{y_{n}}+\frac{\overline{k_{1}}}{2}\right) \\
\overline{k_{3}}=\Delta t \bar{f}\left(t_{n}+\frac{\Delta t}{2}, \overline{y_{n}}+\frac{\overline{k_{2}}}{2}\right) \\
\overline{k_{4}}=\Delta t \bar{f}\left(t_{n}+\Delta t, \overline{y_{n}}+\overline{k_{3}}\right) \\
y_{n+1}^{-}=\overline{y_{n}}+\frac{\overline{k_{1}}}{6}+\frac{\overline{k_{2}}}{3}+\frac{\overline{k_{3}}}{3}+\frac{\overline{k_{4}}}{6}+O\left(\Delta t^{5}\right)
\end{gathered}
$$

References for This Lecture

- Wernher von Braun, The Mars Project University of Illinois Press, 1962
- William Tyrrell Thomson, Introduction to Space Dynamics Dover Publications, 1986
- Francis J. Hale, Introduction to Space Flight Prentice-Hall, 1994
- William E. Wiesel, Spaceflight Dynamics MacGraw-Hill, 1997
- J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

