## Lifting Entry

- Basic planar dynamics of motion, again
- Yet another equilibrium glide
- Hypersonic phugoid motion
- Planar state equations
- Top-level discussion of bank angle and cross-range


## Lifting Entry - Free-Body Diagram



## Dynamics of Lifting Entry

Along the velocity vector,


$$
m \frac{d v}{d t}=m \frac{v^{2}}{r} \sin \gamma-m g \sin \gamma-D
$$

Perpendicular to the velocity vector,

$$
m v \frac{d \gamma}{d t}=L+m \frac{v^{2}}{r} \cos \gamma-m g \cos \gamma
$$

(unbalanced lift rotates flight path angle)

## Equations of Planar Lifting Entry

$$
\begin{aligned}
& \frac{d v}{d t}=\left(\frac{v^{2}}{r}-g\right) \sin \gamma-\frac{D}{m} \\
& v \frac{d \gamma}{d t}=\frac{L}{m}+\left(\frac{v^{2}}{r}-g\right) \cos \gamma
\end{aligned}
$$

## Equilibrium Glide

- Forces perpendicular to velocity vector are balanced

$$
\Longrightarrow \frac{d \gamma}{d t}=0 ; \gamma=\mathrm{constant}
$$

- Typically very shallow glide

$$
\Longrightarrow \text { assume } \gamma \rightarrow 0 ; \sin (\gamma) \rightarrow 0 ; \cos (\gamma) \rightarrow 1
$$

## Equilibrium Glide Equations

$$
\begin{gathered}
\frac{d v}{d t}=-\frac{D}{m} \quad D=\frac{1}{2} \rho v^{2} c_{D} A \\
\rho=\rho_{o} e^{-\frac{h}{h_{s}}} \\
\frac{d v}{d t}=-\frac{1}{2} \rho_{o} v^{2} \frac{c_{D} A}{m} e^{-\frac{h}{h_{s}}} \\
0=\frac{L}{m}+\left(\frac{v^{2}}{r}-g\right) \\
\frac{v^{2}}{r}-g=-\frac{1}{2} \rho_{o} v^{2} \frac{c_{L} A}{m} e^{-\frac{h}{h_{s}}}
\end{gathered}
$$

## Dynamics Perpendicular to Velocity

$$
\frac{c_{L}}{c_{D}}=\frac{L}{D}
$$

L/D set by vehicle aerodynamics, flight velocity, and angle of attack (assumed constant)

$$
\begin{aligned}
& \frac{v^{2}}{r}-g=-\frac{1}{2} \rho_{o} v^{2} \frac{L}{D} \frac{c_{D} A}{m} e^{-\frac{h}{h_{s}}} \\
& \frac{v^{2}}{r}=-\frac{1}{2} \rho_{o} v^{2} \frac{L / D}{\beta} e^{-\frac{h}{h_{s}}}+g \\
& v^{2}=-\frac{1}{2} \rho_{o} r v^{2} \frac{L / D}{\beta} e^{-\frac{h}{h_{s}}}+g r
\end{aligned}
$$

## More Lift-Direction Dynamics

$$
\text { Let } \begin{aligned}
& e^{-\frac{h}{h_{s}}} \equiv \sigma\left(=\text { density ratio } \equiv \frac{\rho}{\rho_{o}}\right) \\
& v^{2}+\frac{1}{2} \rho_{o} r v^{2} \frac{L / D}{\beta} \sigma=g r \\
& v^{2}\left(1+\frac{1}{2} \rho_{o} r \frac{L / D}{\beta} \sigma\right)=g r \\
& v=\sqrt{\frac{g r}{1+\frac{\rho_{o} r \sigma(L / D)}{2 \beta}}}
\end{aligned}
$$

## Velocity during Entry

$$
\begin{gathered}
v_{c_{o}}=\sqrt{\frac{\mu}{r_{o}}}=\sqrt{g_{o} r_{o}} \quad\left(\mu=g_{o} r_{o}^{2}\right) \\
\frac{v}{v_{c_{o}}}=\sqrt{\frac{1}{1+\frac{\rho_{o} r_{o} \sigma(L / D)}{2 \beta}}} \\
v_{c_{o}} \cong v_{e} \quad(\text { within } 1-2 \% \text { for Earth }) \\
\frac{v}{v_{e}}=\left[1+\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}\right]^{-\frac{1}{2}}
\end{gathered}
$$

Entry trajectory as a function of altitude, ratio $\left(\frac{\beta}{L / D}\right)$

## Equilibrium Glide Velocity Trends



Lifting Atmospheric Entry ENAE 791 - Launch and Entry Vehicle Design

## Trends with "Lifting Ballistic Coefficient"



## Nondimensional Form of Equation

$$
\begin{aligned}
& \frac{v}{v_{e}}=\left[1+\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}\right]^{-\frac{1}{2}} \\
& \text { Remember } \widehat{\beta} \equiv \frac{\beta}{\rho_{o} h_{s}} \\
& \frac{v}{v_{e}}=\left[1+\frac{\rho_{o} h_{s}}{2 \beta} \frac{r_{o}}{h_{s}} \frac{L}{D} e^{-\frac{h}{h_{s}}}\right]^{-\frac{1}{2}} \\
& \frac{v}{v_{e}}=\left[1+\frac{1}{2 \widehat{\beta}} \frac{r_{o}}{h_{s}} \frac{L}{D} e^{-\frac{h}{h_{e}} \frac{h_{e}}{h_{s}}}\right]^{-\frac{1}{2}}
\end{aligned}
$$

## Deceleration

$$
\begin{gathered}
\frac{L}{m}=g-\frac{v^{2}}{r}=g-\frac{g v^{2}}{g r}=g\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right] \\
\frac{d v}{d t}=-\frac{D}{m}=-\frac{L}{L / D} \frac{1}{m}=-\frac{1}{L / D} \frac{L}{m} \\
\frac{d v}{d t}=-\frac{g}{L / D}\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]
\end{gathered}
$$

## Deceleration

$$
\text { Let } n \equiv \frac{1}{g} \frac{d v}{d t} \quad \text { (deceleration in g's) }
$$

$$
n=-\frac{1}{L / D}\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]
$$

$$
n=-\frac{1}{L / D}\left[1-\frac{1}{1+\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}}\right]
$$

$$
\left(\text { Note: } 1-\frac{1}{1+K}=\frac{1+K}{1+K}-\frac{1}{1+K}=\frac{K}{1+K}\right)
$$

## Deceleration

$$
\begin{gathered}
n=-\frac{1}{L / D}\left[\frac{\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}}{1+\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}}\right] \\
n=-\frac{\frac{\rho_{o} r_{o}}{2 \beta} e^{-\frac{h}{h_{s}}}}{1+\frac{\rho_{o} r_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}} \\
n=\frac{-1}{\frac{2 \beta}{\rho_{o} r_{o}} e^{+\frac{h}{h_{s}}}+\frac{L}{D}}
\end{gathered}
$$

$n$ monotonically increases with decreasing altitude

## Deceleration Trends with Altitude



## Limiting Deceleration

$$
\begin{gathered}
n_{\text {limit }}=\frac{-1}{\frac{2 \beta}{\rho_{o} r_{o}}+\frac{L}{D}} \\
\beta \sim \mathrm{O}\left(10^{3}\right) ; \rho_{o} \sim \mathrm{O}(1) ; r_{o} \sim \mathrm{O}\left(10^{6}\right) \Longrightarrow \frac{2 \beta}{\rho_{o} r_{o}} \sim \mathrm{O}\left(10^{-3}\right) \\
n_{\text {limit }} \cong \frac{-1}{L / D}
\end{gathered}
$$

Lift significantly moderates peak g's on entry ( $\mathrm{L} / \mathrm{D}=0.25-->n_{\text {limit }}=4 \mathrm{~g}$ s )

## Time for Entry

$$
\begin{gathered}
\frac{d v}{d t}=-\frac{g}{L / D}\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right] \\
d t=\frac{-(L / D) d v}{g\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]} \\
\int_{0}^{t} d t=\int_{v_{e}}^{0} \frac{-(L / D) d v}{g\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]}
\end{gathered}
$$

## Time for Entry

$$
\Delta t=\frac{1}{2} \sqrt{\frac{r_{o}}{g_{o}}} \frac{L}{D} \ln \frac{1+\left(\frac{v}{v_{c_{o}}}\right)^{2}}{1-\left(\frac{v}{v_{c_{o}}}\right)^{2}}
$$

Time for entry $\propto \frac{L}{D}$
Not a function of $\beta$

## Time From Entry Interface



## Distance Along Flight Path

For shallow entry, $\frac{d s}{d t} \cong v \quad d s=v d t$

$$
d s=\frac{-(L / D) v d v}{g\left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]}
$$

$$
\begin{gathered}
\text { Let } u \equiv 1-\left(\frac{v}{v_{c_{o}}}\right)^{2} \quad d u=\frac{-2 v}{v_{c_{o}}^{2}} d v \quad v d v=\frac{-v_{c_{o}}^{2}}{2} d u \\
\int d s=\frac{L / D}{2 g} \int \frac{v_{c_{o}}^{2} d u}{u}
\end{gathered}
$$

Lifting Atmospheric Entry

## Distance Along Flight Path

$$
\begin{gathered}
\Delta s=\frac{(L / D) v_{c_{o}}^{2}}{2 g} \ln u=\frac{(L / D) g_{o} r_{o}}{2 g_{o}} \ln \left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right] \\
\Delta s=\frac{r_{o}}{2} \frac{L}{D} \ln \left[1-\left(\frac{v}{v_{c_{o}}}\right)^{2}\right]
\end{gathered}
$$

Not a function of $\beta$ or $g$

## Distance from Entry



## Bank Angle

$$
\phi \equiv \text { Bank Angle }
$$



Level turn: $L \cos \phi=m g$

$$
\frac{L}{m g}=\frac{1}{\cos \phi} \equiv n_{b a n k}
$$

(g's you pull in the banked turn)

## Crossrange (without derivations)

- Use of lift to deviate laterally from planar groundtrack
- Optimum bank angle to maximize crossrange

$$
\phi_{o p t} \cong \cot ^{-1} \sqrt{1+0.106\left(\frac{L}{D}\right)^{2}}
$$

- Maximum achievable crossrange

$$
y_{\max } \cong \frac{r_{o}}{5.2}\left(\frac{L}{D}\right)^{2} \frac{1}{\sqrt{1+0.106\left(\frac{L}{D}\right)^{2}}}
$$

## Crossrange Based on L/D



## Early Shuttle Design Configurations

- Delta wing configuration



## Basic Equations of Motion

From last time,

$$
\begin{aligned}
v \frac{d \gamma}{d t} & =\frac{L}{m}+\left(\frac{v^{2}}{r}-g\right) \cos \gamma \\
\frac{d v}{d t} & =\left(\frac{v^{2}}{r}-g\right) \sin \gamma-\frac{D}{m}
\end{aligned}
$$



Assume (at entry velocities close to orbital) $g \cong \frac{v^{2}}{r}$

$$
\begin{gather*}
v \frac{d \gamma}{d t}=\frac{L}{m}=\frac{\rho v^{2}}{2} \frac{c_{L} A}{m}=\frac{\rho v^{2}}{2 \beta} \frac{L}{D}  \tag{1}\\
\frac{d v}{d t}=-\frac{D}{m}=-\frac{\rho v^{2}}{2 \beta} \tag{2}
\end{gather*}
$$

## Solving for Velocity

Divide (2) by (1)

$$
\begin{gather*}
\frac{\frac{d v}{d t}}{v \frac{d \gamma}{d t}}=\frac{-\frac{\rho v^{2}}{2 \beta}}{\frac{\rho v^{2}}{2 \beta} \frac{L}{D}} \Longrightarrow \frac{d v}{v}=-\frac{d \gamma}{L / D}  \tag{3}\\
\int_{v_{e}}^{v} \frac{d v}{v}=-\frac{1}{L / D} \int_{\gamma_{e}}^{\gamma} d \gamma \\
\ln \frac{v}{v_{e}}=\frac{-\left(\gamma-\gamma_{e}\right)}{L / D} \Longrightarrow \frac{v}{v_{e}}=e^{-\frac{\gamma-\gamma_{e}}{L / D}} \tag{4}
\end{gather*}
$$

## Differential Elements

As before,

$$
\begin{align*}
& \frac{d h}{d t}=v \sin \gamma  \tag{5}\\
& \rho=\rho_{o} e^{-\frac{h}{h_{s}}} \tag{6}
\end{align*}
$$

Differentiating (6),

$$
\begin{gather*}
\frac{d \rho}{d t}=-\frac{\rho_{o}}{h_{s}} e^{-\frac{h}{h_{s}}} \frac{d h}{d t}=-\frac{\rho}{h_{s}} \frac{d h}{d t} \\
\frac{d \rho}{d t}=-\frac{\rho}{h_{s}} v \sin \gamma \tag{7}
\end{gather*}
$$

## Differential Elements (2)

Solve (7) for $v$

$$
\begin{equation*}
v=\frac{-h_{s}}{\sin \gamma}\left(\frac{1}{\rho} \frac{d \rho}{d t}\right) \tag{8}
\end{equation*}
$$

Substitute (8) into (1) and rewrite as

$$
\begin{align*}
\frac{d \gamma}{d t}=\frac{\rho v}{2 \beta} \frac{L}{D} & =\frac{\rho}{2 \beta} \frac{L}{D}\left(\frac{-h_{s}}{\sin \gamma}\right) \frac{1}{\rho} \frac{d \rho}{d t} \\
\frac{d \gamma}{d t} & =\frac{-h_{s}}{2 \beta \sin \gamma} \frac{L}{D} d \rho \tag{9}
\end{align*}
$$

## Solving for Flight Path Angle

$$
\begin{gather*}
\int_{\gamma_{e}}^{\gamma} \sin \gamma d \gamma=-\frac{h_{s}}{2 \beta} \frac{L}{D} \int_{0}^{\rho} d \rho  \tag{9}\\
\cos \gamma-\cos \gamma_{e}=\frac{h_{s}}{2 \beta} \frac{L}{D} \rho  \tag{10}\\
\cos \gamma=\frac{h_{s}}{2 \beta} \frac{L}{D} \rho+\cos \gamma_{e}  \tag{11}\\
\gamma=-\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho+\cos \gamma_{e}\right) \tag{12}
\end{gather*}
$$

Note that the negative sign was inserted because $\cos ^{-1}$ is ambiguous as to direction, and the flight path angle on entry should be $<0$.

## Flight Path Angle and Velocity Equations

$$
\begin{equation*}
\gamma=-\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right) \tag{13}
\end{equation*}
$$

Rewrite (4) as

$$
v=v_{e} \exp \left(-\frac{\gamma-\gamma_{e}}{L / D}\right)=v_{e} \exp \left(\frac{\gamma_{e}-\gamma}{L / D}\right)
$$

and substitute into (13)

$$
v=v_{e} \exp \left\{\frac{1}{L / D}\left[\gamma_{e}+\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right)\right]\right\}(14)
$$

## Deceleration

Along the flight path, $\left|\frac{D}{m}\right|=\frac{\rho v^{2}}{2 \beta}$
Perpendicular to the flight path, $\left|\frac{L}{m}\right|=\frac{\rho v^{2}}{2 \beta} \frac{L}{D}$
Total deceleration (not in g's)

$$
\begin{gather*}
n=\sqrt{\left(\frac{D}{m}\right)^{2}+\left(\frac{L}{m}\right)^{2}}=\frac{1}{m} \sqrt{D^{2}+L^{2}}=\frac{\rho v^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} \\
n=\frac{\rho_{o} v^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} e^{-\frac{h}{h_{s}}} \tag{15}
\end{gather*}
$$

## Fiddling with Algebra

$$
n=\frac{\rho_{o}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} e^{-\frac{h}{h_{s}}} v^{2}
$$

Substitute in (14)

$$
\begin{gather*}
n=\frac{\rho_{o} v_{e}^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} \exp \left\{\frac{2}{L / D}\left[\gamma_{e}+\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right)\right]\right\} \\
X \equiv\left[\gamma_{e}+\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right)\right] \\
n=\frac{\rho_{o} v_{e}^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} e^{\frac{2 X}{L / D}} \tag{17}
\end{gather*}
$$

Lifting Atmospheric Entry MARYLAND

## More Algebra

$$
\begin{aligned}
& \text { Set } \frac{d n}{d h}=0 \\
& 0=\frac{\rho_{o} v_{e}^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}}\left[e^{-\frac{h}{h_{s}}} e^{\frac{2 X}{L / D}} \frac{2}{L / D} \frac{d X}{d h}+\left(\frac{-1}{h_{s}}\right) e^{-\frac{h}{h_{s}}} e^{\frac{2 x}{L / D}}\right](18)
\end{aligned}
$$

Factoring out common terms,

$$
\begin{equation*}
\frac{1}{h_{s}}=\frac{2}{L / D} \frac{d X_{m}}{d h} \tag{19}
\end{equation*}
$$

## Even More Algebra

From (13),

$$
\begin{gather*}
\gamma=-\cos ^{-1}\left(\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right) \\
X=\gamma_{e}-\gamma=-\cos ^{-1}(\cos \gamma)+\gamma_{e} \\
Y \equiv \cos \gamma \\
X=\gamma_{e}-\cos ^{-1} Y \tag{20}
\end{gather*}
$$

## Trigonometry, for a Change

Trig identity -

$$
\begin{gather*}
\frac{d\left(\cos ^{-1} u\right)}{d x}=\frac{-1}{\sqrt{1-u^{2}}} \frac{d u}{d x}  \tag{21}\\
\frac{d X}{d h}=-\frac{d\left(\cos ^{-1} Y\right)}{d h}=\frac{1}{\sqrt{1-Y^{2}}} \frac{d Y}{d h} \\
\frac{d X}{d h}=\frac{1}{\sqrt{1-\cos ^{2} \gamma}} \frac{d(\cos \gamma)}{d h}
\end{gather*}
$$

## Back to the Algebra

From (13),

$$
\cos \gamma=\frac{h_{s}}{2 \beta} \frac{L}{D} \rho_{o} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}
$$

$$
\begin{equation*}
\frac{d X}{d h}=\frac{1}{\sqrt{1-\cos ^{2} \gamma}} \frac{d}{d h}\left(\frac{h_{s} \rho_{o}}{2 \beta} \frac{L}{D} e^{-\frac{h}{h_{s}}}+\cos \gamma_{e}\right) \tag{22}
\end{equation*}
$$

$$
\begin{gather*}
\frac{d X}{d h}=\frac{1}{\sin \gamma}\left[\frac{h_{s} \rho_{o}}{2 \beta} \frac{L}{D}\left(\frac{-1}{h_{s}}\right) e^{-\frac{h}{h_{s}}}\right] \\
\frac{d X}{d h}=\frac{-\rho_{o}}{2 \beta \sin \gamma} \frac{L}{D} e^{-\frac{h}{h_{s}}} \tag{23}
\end{gather*}
$$

Lifting Atmospheric Entry

## Maximum Deceleration Case

If we go back to the $n_{\max }$ case, (19) gives

$$
\begin{gathered}
\frac{1}{h_{s}}=\frac{2}{L / D} \frac{d X_{m}}{d h} \\
\frac{1}{h_{s}}=\frac{2}{L / D} \frac{-\rho_{o}}{2 \beta \sin \gamma_{m}} \frac{L}{D} e^{-\frac{h_{m}}{h_{s}}}
\end{gathered}
$$

$h_{m}, \gamma_{m}$ are values at $n_{\max }$

$$
\begin{gather*}
\frac{1}{h_{s}}=\frac{-\rho_{o}}{\beta \sin \gamma_{m}} \frac{L}{D} e^{-\frac{h_{m}}{h_{s}}}  \tag{24}\\
\sin \gamma_{m}=\frac{-\rho_{o} h_{s}}{\beta} \frac{L}{D} e^{-\frac{h_{m}}{h_{s}}} \tag{25}
\end{gather*}
$$

## Let's Go Back to Algebra

$$
\begin{gathered}
\text { Let } \Phi \equiv-\frac{\rho_{o} h_{s}}{2 \beta} \frac{L}{D} \\
\cos \gamma_{m}=\Phi e^{-\frac{h_{m}}{h_{s}}}+\cos \gamma_{e} \\
\sin \gamma_{m}=\Phi e^{-\frac{h_{m}}{h_{s}}} \\
\text { Let } H \equiv e^{-\frac{h_{m}}{h_{s}}} \\
\left(\Phi e^{-\frac{h_{m}}{h_{s}}}+\cos \gamma_{e}\right)^{2}+\left(\Phi e^{-\frac{h_{m}}{h_{s}}}\right)^{2}=1 \\
\left(\Phi H+\cos \gamma_{e}\right)^{2}+(\Phi H)^{2}=1
\end{gathered}
$$

## Algebra is Fun, Don't You Think?

$$
\begin{gathered}
2 \Phi^{2} H^{2}+2 \Phi H \cos \gamma_{e}+\cos ^{2} \gamma_{e}-1=0 \\
H=\frac{2 \Phi^{2} H^{2}+2 \Phi H \cos \gamma_{e}-\sin ^{2} \gamma_{e}=0}{4 \Phi^{2}} \\
H=-\frac{1}{2 \Phi}\left(\cos \gamma_{e} \pm \sqrt{4 \Phi^{2} \cos ^{2} \gamma_{e}+4\left(2 \Phi^{2}\right) \sin ^{2} \gamma_{e}}\right. \\
H=-\frac{1}{\cos ^{2} \gamma_{e}+2 \sin ^{2} \gamma_{e}}\left(\cos \gamma_{e} \pm \sqrt{1+\sin ^{2} \gamma_{e}}\right)
\end{gathered}
$$

## Maximum Deceleration Equations

Skipping some painful algebra and trig,

$$
h_{m}=h_{s} \ln \left\{\frac{-\rho_{o} h_{s}}{2 \beta \sin \gamma_{e}}\left[\sqrt{4+\left(\frac{L}{D}\right)^{2} \csc ^{2} \gamma_{e}}-\frac{L}{D} \cot \gamma_{e}\right]\right\}
$$

$$
\cos \gamma_{m}=\cos \gamma_{e}-\frac{(L / D) \sin \gamma_{e}}{\sqrt{4+(L / D)^{2} \csc ^{2} \gamma_{e}}-(L / D) \cot \gamma_{e}}
$$

$$
v_{m}=v_{e} e^{-\frac{\gamma_{m}-\gamma_{e}}{L / D}}
$$

$$
n_{\max }=\frac{\rho_{o} v_{e}^{2}}{2 \beta} \sqrt{1+\left(\frac{L}{D}\right)^{2}} v_{m}^{2}
$$

## Phugoid Oscillations

Assume a shallow, linear entry trajectory:

$$
\begin{gathered}
\gamma \ll 1 \quad D \approx 0 \quad \dot{\gamma}_{o} \approx 0 \\
\dot{h}=v \sin \gamma \cong v \gamma \\
\frac{v \dot{\gamma}}{g}=\frac{L}{m g}-\left(1-\frac{v^{2}}{v_{c}^{2}}\right)
\end{gathered}
$$

Small perturbations $\Longrightarrow \quad h=h_{1}+\Delta h$

$$
\gamma=\gamma_{1}+\Delta \gamma \approx \Delta \gamma
$$

## Perturbation Analysis

$$
\begin{gathered}
\dot{h}=v \gamma \\
\dot{h}=\dot{h}_{1}+\Delta \dot{h}=\not \gamma_{1} v_{1}+\Delta \dot{h}=\Delta \dot{h} \\
\Delta \dot{h}=\left(v_{1}+\Delta v_{1}\right)\left(\not \mathscr{\gamma}_{1}+\Delta \gamma\right)=v_{1} \Delta \gamma+\Delta v_{1} \Delta \gamma \\
\Delta \dot{h}=v_{1} \Delta \gamma
\end{gathered}
$$

Neglecting drag $\Longrightarrow v \cong$ constant

$$
\begin{aligned}
& \frac{L}{m}=\frac{L_{1}+\Delta L}{m}=\frac{v^{2} A c_{L}}{2 m} \rho_{o} e^{-\frac{h_{1}+\Delta h}{h_{s}}} \\
& =\frac{v^{2} A c_{L}}{2 m} \rho_{o} e^{-\frac{h_{1}}{h_{s}}} e^{-\frac{\Delta h}{h_{s}}}=\frac{L_{1}}{m} e^{-\frac{\Delta h}{h_{s}}}
\end{aligned}
$$

## Perturbation Analysis

Using Taylor's series expansion,

$$
\begin{gathered}
\frac{L}{m} \cong \frac{L_{1}}{m}\left(1-\frac{\Delta h}{h_{s}}\right) \\
\frac{\Delta L}{m}=-\frac{L_{1}}{m} \frac{\Delta h}{h_{s}} \\
\frac{v_{1}}{g} \Delta \dot{\gamma}=\frac{\Delta L}{m g}+\left[\frac{L_{1}}{m g}-\left(1-\frac{v_{1}^{2}}{v_{c}^{2}}\right)\right] \\
v_{1} \Delta \dot{\gamma}=\frac{\Delta L}{m}=\Delta \ddot{h}
\end{gathered}
$$

## Perturbed Lift

On an equilibrium glide,

$$
\begin{gathered}
\dot{\gamma}=0 \Longrightarrow \frac{L}{m}=g-\frac{v^{2}}{r} \\
\frac{L_{1}}{m g}=1-\frac{v_{1}^{2}}{g r}=1-\frac{v_{1}^{2}}{v_{c}^{2}} \\
\Delta \ddot{h}=\frac{\Delta L}{m}=-\frac{L_{1}}{m} \frac{\Delta h}{h_{s}}=-\left(1-\frac{v_{1}^{2}}{v_{c}^{2}}\right) \frac{g \Delta h}{h_{s}} \\
\Delta \ddot{h}+\left(1-\frac{v_{1}^{2}}{v_{c}^{2}}\right) \frac{g}{h_{s}} \Delta h=0 \triangleq \begin{array}{c}
\text { Simple } \\
\text { harmonic } \\
\text { motion } \\
\text { undamped) }
\end{array}
\end{gathered}
$$

## Phugoid Parameters

Frequency: $\omega^{2}=\left(1-\frac{v_{1}^{2}}{v_{c}^{2}}\right) \frac{g}{h_{s}}$
Period: $P=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\left(1-\frac{v_{1}^{2}}{v_{c}^{2}}\right) \frac{g}{h_{s}}}} \cong \frac{169 \sec }{\sqrt{1-\frac{v_{1}^{2}}{v_{c}^{2}}}}$

$v_{c} \sim 8000 \frac{m}{\sec } \Longrightarrow$| $v_{1}\left(\frac{m}{s e c}\right)$ | $P$ |
| :---: | :---: |
| 7750 | 11 m 21 s |
| 6000 | 4 m 15 s |
| 4000 | 3 m 15 s |
| 2000 | 2 m 55 s |

## Free-Body Diagram with Spherical Planet



## Planar State Equations

$$
\omega=\dot{\gamma}-\dot{\theta}
$$



Sum of transverse accelerations

$$
\frac{L}{m}-g \cos \gamma=\omega v
$$

Sum of parallel accelerations

$$
-\frac{D}{m}-g \sin \gamma=\dot{v}
$$

## Planar State Equations (2)

$$
\begin{gathered}
\dot{r}=\dot{h}=v \sin \gamma \\
r \dot{\theta}=v \cos \gamma \\
\omega=\dot{\gamma}-\dot{\theta}=\dot{\gamma}-\frac{v}{r} \cos \gamma \\
\frac{L}{m}-g \cos \gamma=\left(\dot{\gamma}-\frac{v}{r} \cos \gamma\right) v \\
\frac{L}{m}-\left(g-\frac{v^{2}}{r}\right) \cos \gamma=\dot{\gamma} v \\
\frac{L}{m}-\left(1-\frac{v^{2}}{r g}\right) g \cos \gamma=\dot{\gamma} v
\end{gathered}
$$

## The Canonical Planar State Equations

$$
\begin{gathered}
v \dot{\gamma}=\frac{L}{m}-\left(1-\frac{v^{2}}{v_{c}^{2}}\right) g \cos \gamma \\
\dot{v}=-\frac{D}{m}-g \sin \gamma \\
\dot{r}=\dot{h}=v \sin \gamma \\
r \dot{\theta}=v \cos \gamma
\end{gathered}
$$

Coupled first-order ODEs

## Associated Parameters to State Eqns

$$
\begin{gathered}
\frac{L}{m}=\frac{1}{2} \frac{\rho v^{2} A c_{L}}{m}=\frac{\rho v^{2}}{2} \frac{A c_{D}}{m} \frac{c_{L}}{c_{D}}=\frac{\rho v^{2}}{2 \beta} \frac{L}{D} \\
\frac{D}{m}=\frac{1}{2} \frac{\rho v^{2} A c_{D}}{m}=\frac{\rho v^{2}}{2 \beta} \\
\rho=\rho_{o} e^{-\frac{h}{h_{s}}} \\
h=r-r_{o} \\
g=g_{o}\left(\frac{r_{o}}{r}\right)^{2}
\end{gathered}
$$

Lifting Atmospheric Entry

