Some Applications of Entry Theory

- Taking an analytical look at recent* space events
- Crossrange and landing opportunities
- Ballistic aerobraking
*for suitable definitions of "recent"

Washington Post - May 12, 2008

Perilous Landings by Soyuz Worry NASA
U.S. to Be Dependent on Russian Capsule

Members of the ground crew check the area around the Soyuz capsule. The three astronauts on board, including American Peggy A. Whitson, were uninjured. (By Shamil Zhumatov -- Associated Press)

Soyuz Deorbit Milestones

De-ortil to Entry

Soyuz 5 Reentry

Soyuz Heat Shield Shape

$$
d=2.2 \mathrm{~m}
$$

depth $\sim 0.3 \mathrm{~m}$
half-angle $\sim 30 \mathrm{deg}$

$$
R \sim 2.2 \mathrm{~m}
$$

Soyuz Newtonian Aerodynamics

Coefficients									
Max CL $=$	0.00	at Alpha $=$	0.0	deg	Min $\mathrm{CL}=$	-0.60	at Alpha $=$	37.0	deg
Max CD $=$	1.75	at Alpha $=$	0.0	deg	Min $\mathrm{CD}=$	0.02	at Alpha $=$	90.0	deg
Max L/D $=$	0.00	at Alpha $=$	0.0	deg	$\operatorname{Min} \mathrm{L} / \mathrm{D}=$	-2.67	at Alpha $=$	90.0	deg

Estimation of Soyuz Entry Parameters

$$
c_{D} \sim 1.75
$$

$$
A=\pi r^{2}=\pi(1.1)^{2}=3.8 \mathrm{~m}^{2}
$$

$$
\beta=\frac{2900 \mathrm{~kg}}{(1.75)\left(3.8 \mathrm{~m}^{2}\right)}=436 \frac{\mathrm{~kg}}{\mathrm{~m}^{2}}
$$

$$
\beta=4270 \mathrm{~Pa}
$$

Published Flight Characteristics

Entry to Landing

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

Predicted and Published Soyuz Parameters

Soyuz Deorbit Reconstruction

De-prbil to Entry

Velocity Components in Orbit (continued)

$$
\begin{gathered}
\vec{h}=\vec{r} \times \vec{v} \quad h=r v \cos \gamma=r\left(r \frac{d \theta}{d t}\right)=r^{2} \frac{d \theta}{d t} \\
v_{r}=\frac{r^{2} \frac{d \theta}{d t} e \sin \theta}{p}=\frac{h e \sin \theta}{p}=\frac{\sqrt{p \mu}}{p} e \sin \theta \\
v_{r}=\sqrt{\frac{\mu}{p}} e \sin \theta \\
v_{\theta}=r \frac{d \theta}{d t}=r \frac{h}{r^{2}}=\frac{h}{r}=\frac{\sqrt{p \mu}}{r} \quad v_{\theta}=\sqrt{\frac{\mu}{p}}(1+e \cos \theta) \\
\tan \gamma=\frac{v_{r}}{v_{\theta}}=\frac{e \sin \theta}{1+e \cos \theta}
\end{gathered}
$$

Nominal Soyuz Entry Trajectory

MARYLAND

Soyuz Trajectory (Ballistic Entry)

Nominal Entry Heating and Velocity

Ballistic Entry Heating and Velocity

G Loading (nominal entry)

G Loading (Ballistic Entry)

Published Flight Characteristics

Entry to Landing

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

Cross-Range and G's vs. Roll Angle

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

Soyuz Landing Ellipse

Typical Orbit Groundtrack

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

Landing Opportunities - 1200 mi Xrange

Landing Opportunities - 300 mi Xrange

Mars Global Surveyor Aerobraking

MGS Multipass Aerobraking

Aerobraking From Capture Orbit to Mapping Orbit Altitude Takes About 130 Earth Days

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

(Single-Pass) Aerocapture Maneuver

Some Applications of Entry Aerodynamics ENAE 791 - Launch and Entry Vehicle Design

Ballistic Aerocapture Trajectories

