Case Study: ParaShield

- Discussion of term project
- Origin of ParaShield concept
- ParaShield flight test
- Wind tunnel testing
- Future applications
- Other people's applications

© 2024 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Term Project - Transportation for Space Tourism

- Design a system to support the transport of humans and cargo between Earth surface and Earth orbit to operate a space hotel
 - Cargo launch vehicle for construction
 - Passenger/crew launch and entry vehicle (if different from cargo)
- Challenges
 - Propellant selection
 - Crew/cargo compatibility
 - Reusable / expendable
 - Mission applications of vehicles

- The space station is a rotating torus 300m in diameter
- 32m long
- total mass of 200 MT
- The station will accommodate 500 guests and staff
 - Each person has a transport mass of 150 kg
 - Each person requires 20 kg/day in consumables
- The average stay time is two weeks UNIVERSITY OF MARYLAND

Term Project – Space Station Details (Preliminary) • It is composed of 30 cylindrical segments 10m in diameter and

• Each segment has a structural mass of 150 MT and an outfitted

3

Term Project

- Split into teams of 1- people (your choice)
- in the most cost effective manner possible
- "catalog engineering"!)
- spacecraft systems not ENAE791-relevant
- Design process should proceed throughout the term
- Formal design presentations at end of term

• Design an architecture to support construction and operations • All vehicles will be conceptually designed from scratch (no

• Parametric design parameters will be provided for human

Expectations for Term Projects – Launch Vehicles • Trade studies for launch vehicle(s) – design for minimum cost

- Number of stages / Δv distribution
- Choice of propellants
- Payload mass(es)
- Reusable vs. expendable
- Launch vehicle design using MERs
- Launch escape system

Term Projects – Crew Launch & Entry Vehicle

- Trade studies
 - Crew complement
 - Reusable vs. expendable
 - RCS and deorbit propulsion
 - Aerodynamic configuration
 - Heat shield materials and configuration
 - Entry, descent, and landing system
- Vehicle nonrecurring and recurring costs
- Entry trajectory

guration tem curring costs

6

ENAE 791 - Launch and Entry Vehicle Design

Term Project – Systems Engineering

- state operations
- Total cost (nonrecurring + recurring)
- Breakeven charge for hotel at 10% and 25% discount rates
- Analysis of system resiliency
- Targets of opportunity

• Mission model (flights/yr) for creation of hotel and steady-

7

Graduate Design Class: Fall, 1988

- Six students in graduate class in Aeronautics and Astronautics at MIT
- supplement/replace the shuttle in the event of another Challenger-type accident
- Had to be capable of launch on Delta II, Atlas, Titan IIIC (existing ELVs)

• Project summary: Design an alternative human spacecraft to

Parametric Analysis of Heating

9

Parametric Analysis of Stagnation Temp

10

Parametric Analysis of Dynamic Pressure

11

Parametric Analysis of Peak Deceleration

Comparison of Entry Trajectories

Case Study: ParaShield ENAE 791 – Launch and Entry Vehicle Design

Comparison of Heat Shield Temperatures

Time (sec)

Case Study: ParaShield ENAE 791 – Launch and Entry Vehicle Design

Comparison of Total Heat Loads

UNIVERSITY OF MARYLAND Time (sec)

Case Study: ParaShield ENAE 791 – Launch and Entry Vehicle Design

Required Heat Shield Diameter

16

Payload Volume Protected from Wake

17

Synopsis of Initial Feasibility Study • Ultra-low ballistic coefficient vehicles provide significant advantages for atmospheric entry

UNIVERSITY OF

ARYLAND

- Relief from restriction to conical configurations to avoid aft wake – Significantly lower peak shield temperatures, allowing the use of
- existing COTS materials
- Little or no entry ionization creating blackouts for communications and navigation
- Terminal velocity in lower atmosphere is limited to 15-20 m/ sec, requiring only impact attenuation - Aero decelerator deployed and verified before entry Air bags or landing rockets for land impact

ParaShield Flight Test Origins

- Discussion with officials of American Rocket Company (AMROC) in April, 1989
 - Single Engine Test (SET-1) vehicle being developed for suborbital test flight out of Vandenberg AFB
 - Existing payload compartment was empty and available - Targeted launch date: August, 1989 (four months!)
- Total available funding: \$80K
- Total available personnel: 3 grad students, 2 undergrads (all volunteers), 1 faculty (part-time)
- Facilities: undergrad projects lab shop

UNIVERSITY OF ARYLAND

Project Skidbladnir: Flight Test of the **ParaShield Concept**

Space Systems Laboratory Massachusetts Institute of Technology

÷.

Project Skidbladnir

Introduction

Engineering Objectives

- Provide a flight demonstration of ParaShield ٠ concept
- Verify models of •
 - flight dynamics
 - aerothermodynamics
 - structural loads
- lee-side ionization, and landing phase
- Carry commemoratives for payload

Project Skidbladnir

Collect imaging data on launch vehicle separation,

Configuration

Mass Budget

All masses in kilograms

Payload **Avionics** Sensors Instruments Electronics Mechanisms Deployment Recovery Structure Thermal Protection Capsule Power Propulsion

Total

Project Skidbladnír

5.1

i ili	1)			
	n	١			

(2.0) (2.0)

(1

- 20.0
- (18.0) (2.0)
 - 79.5
- n (38.9) (40.6)
- 14.0 21.5

147.1

Trajectory

Trajectory Assumptions

Vehicle Assumptions

- $\beta = 215.7 Pa$
- L/D = .177

Flight Dynamics Assumptions

- ParaShield deployment occurs 60 sec after passing 100 km mark
 - Time = 174 sec
 - Altitude = 148.8 km
 - Velocity = 832 m/sec
 - Flight path angle = 40.8°

Project Skidbladnir

m = 150 kg

Aerodynamic Similarity to Viking Lander

Skidbladnir in Entry Configuration (MIT SSL)

VIKING Lander in Aeroshell for Atmospheric Entry (Martin Marietta)

Comparison of Drag Coefficients: Parashield (Calculated) vs. Viking Lander (Wind Tunnel)

9

AMROC Trajectory (Roll Angle = 0)

Time (sec,)

Altitude (m)

Υ.

.

AMROC Trajectory (Roll Angle = 180°) Dynamic Pressure Heating Rate 1800 - -1600140012001000 Pa 800 +-+ 600 ·~~--400 -200- $\mathbf{0}$ 70000 60000 50000 40000 30000 20000

Altitude (m)

Key Trajectory Parameters

Parameters

- Roll angle
- Max. temperature
- Max. heating rate
- Touchdown time (after deployment
- Downrange distance (after deploy.
 - Terminal velocity
 - Max. dynamic pressure
 - at Maci
 - Max. Maci
 - Max. g's
 - **Total flight duration**
 - Total downrange distance
 - Apogee

Project Skidbladnir

	Best Case	Worst Case
e:	0 °	180°
e:	910° F	913° F
e:	15.4 W/m^2	15.5 W/m^2
t):	805 sec	795 sec
.):	149 km	130 km
y:	23.0 m/sec	23.0 m/sec
e:	1690 Pa	1770 Pa
h:	3.18	3.14
h:	5.28	5.28
s:	7.64	8.00
n:	16:19	16:15
e:	229 km (143 mi)	210 km (131 mi)
e:	164 km (102 mi)	164 km (102 mi)

Entry with Total Deployment Failure

- Ballistic coefficient: 2150 Pa
- Maximum temperature: 2000° F
- Maximum deceleration: 9 g
- Maximum dynamic pressure: 20,000 Pa
 - Terminal velocity: 75 m/sec
 - Prognosis: poor

Project Skidbladnir

Landing Loads

Acceptable Condition: Heat shield shredded **Bent struts** Intact capsule

Project Skidbladnir

- Terminal Velocity ~23 m/sec (51 mph)
 - For water penetration of 3 m, average deceleration is 9 g

Downrange Direction

Nominal search area of 170 sq. mi.

Project Skidbladnir

Nominal Landing Footprint

Maximum likelihood landing is at periphery of footprint
ParaShield Structure

Project Skidbladnír

Strut Structural Design

Buckling limit: 1930 lbf./strut Yield strength: 35000 psi

Stress: Radial Strut #7

.

.

Angle (°)

Attitude Control

Thrust vs. Time (2 X 1/16" throat diameter thrusters, unregulated)

, ¹.

Attitude Control Propulsion

Requirements •

- Damping 10 lbf-sec per axis
- Position control 20 lbf-sec per axis
- Total impulse requirement 90 lbf-sec _

Assumptions •

- Initial tank pressure 4500 psi, regulated to 125 psi ----
- Tank volume 514 cu.in. -
- 2 thrusters, 0.156 in throat diameter -

Parametric Propellent Analysis

Propellent	Thrust
Hydrogen	8.15
Helium	7.65
Nitrogen	8.15
CO2	8.44

Project Skidbladnír

- Impulse (Ibf-sec) <u>(lbf)</u> 89.6 93.6 334.8 485.9

Time (sec)

T + 361 sec., Mach 5.28, Q = 19.7 Pa Total Impulse (lbf-s) Thrust (lbf) - - -100 90 80 70 - 60 lbf-s 50 lbf 40 30 20 - 10

10

8

0

12

Time (sec)

6

T + 969 sec., Mach .07, Q = 391.4 Pa

Time (sec)

Avionics

<u>Time</u>

- T 15 min
- T 120 sec
 - T = 0 sec
- T + 80 sec
- T + 144 sec
- T + 159 sec
- T + 174 sec
- T + 184 sec
- T + 220 sec T + 230 sec
- T + 345 sec
- T + 370 sec
- T + 975 sec
- T + 980 sec

Start video camera

- Thrust termination
- Jettison payload shroud
- Detach vehicle from booster; engage attitude rate damping; start SLR camera; start mechanical deployment timer; arm ParaShield deployment
- Begin nominal deployment of ParaShield
- Nominal deployment of ParaShield completed
- Begin contingency deployment of ParaShield
- Contingency deployment of ParaShield completed
- Encounter sensible atmosphere; engage attitude control
- Disengage attitude control; engage attitude rate damping
- Deploy recovery beacon
- Touchdown

Project Skidbladnir

Flight Timeline

Event

- Power up internal systems; pressurize thruster manifold
- Launch; start master event timer; start data recording

Sensor Complement

- - 12 on ParaShield fabric
 - 3 on capsule exterior
 - 1 in capsule interior ----
- 4 strain gauge bridges
 - Strain on radial and brace struts
- 4 accelerometers
- 3 fluidic rate sensors
- 5 pressure transducers
 - Static pressure
 - Dynamic pressure -
 - Capsule environment
 - Low pressure manifold
 - High pressure manifold

Project Skidbladnir

16 RTD temperature transducers

- Primary Control and Data Computer
 - Ampro 80286 single-board (AT clone)
 - Coded in C and Assembler
 - Program stored in EPROM -----
 - Data recorded in EAROM
 - Total data capacity 128Kx8 -
- Distributed Redundant Data Computers •
 - F86HC11 microcontroller boards
 - Coded in Forth ____
 - Program and data stored in nonvolatile SRAM
 - Total data capacity 16Kx8 each
- Master Event Timer
 - Master reference clock bused to all processors -
 - Synchonized interrupt for data collection, main flight control -
- **Contingency Deployment Controller**
 - 60 sec mechanical timer initiated at separation

Project Skidbladnir

Control Electronics

Interfaces to Booster

Project Skidbladnir

Interface Plate Specifics

- Three to four pairs of ball-lock mechanism and guide pin assemblies--enough to support transverse loading and lateral vibrations during launch sequence
- Guide pins prevent rotation and assist in mating of payload to interface plate on launch pad
- Ball-lock and pin assemblies mate to outer flange of back plate of recovery module
- Interface plate has space in middle for camera lenses and beacon assembly
- Space is left around thrusters to ensure clean separation of payload from booster

Project Skidbladnir

Payload Interface Plate

Summary

M.I.T. Space Systems Lab

.

Payload Integration

Payload arrives July 1, 1989

Acceptance check: verify post-shipping integrity and repair if necessary

Functional check

- possible
- Verify operation of all systems

Booster mating

- payload from support structure

- Attach front protective plate

System monitoring until launch

Project Skidbladnir

Fit check to payload interface plate---done previously at MIT if

Lift payload to top of booster--guidelines necessary to protect

Engage ball-lock mechanisms and make electrical connections

Remove lifting assembly--will need support scaffolding.

Remaining Design Tasks

- Structural Dynamics
- Power Distribution System
- Data and Control System
- Optimal Control Algorithm
- Heat Transfer
- Low-Speed Aerodynamics
- Internal Layout

Project Skidbladnir

Planned/Potential Testing

- Systems Testing
 - Lab Bench

 - Integration (in lab) Acceptance (at pad)
- Vacuum Chamber • Deployment Mechanism Control System (single-axis) Capsule Thermal Environment End-to-end Mission Simulation
- Low-Speed Aerodynamics Stability at Terminal Velocity Water Impact Test

Project Skidbladnir

4/2	2 4/2	9	5/6	5/13	5/20	5/2	7 6/3	6/1	0 6/17	6/24	7/1
				Pre-i		Review	,			Delivery	
	Ċapsule	Fabric	ation	۱	L						
		_									
	FMEA										
				1							
		ļ	_								
	Avionics Assembly										
						Δ					
						Gyros Deliv.					
			T					Integ	ation		
ontro	Sys Tes		┢						Vacuum	Accept.	
		1							Test -	lest	
areq.A	rooyna	nics	 	-							
			L								

- Designs and analyses complete enough to begin general procurement and fabrication
- Detailed analyses indicate ParaShield concept will meet or exceed original performance expectations
- Resolution of primary interface issues (mechanical and electrical) expected from this trip
- Major remaining concerns are operational details, such as visual acquisition of capsule following splashdown
- Program on track to support launch window beginning 20 July 1989

Project Skidbladnir

Summary

Early Assembly of Shield Structure

The Skidbladnir Development Team

Shield Structure and Deployment

ParaShield Stowed and Deployed

Launch Vehicle Integration

October 5, 1989 - T+2 sec

October 5, 1989 - T+60 sec

October 6, 1989 - Aftermath

ParaShield in GLM Wind Tunnel

Schlieren Supersonic Flow Visualization

CFD Model

Configurations for Orbital Flight Test

ParaShield for ISS Crew Rotation Mission

ParaShield for Human Lunar Return

ParaShield for Human Mars Return

Conclusions

- Ultralow ballistic coefficient entry vehicles can match performance of conventional capsule-type vehicles
- ParaShield approach provides both entry thermal protection and aerodynamic deceleration, except for impact attenuation
- Structural mass efficiencies and packing factors are improved by larger volume protected from aft wake
- Separation of entry/descent/landing systems from crew cabin provides additional margin for exploration missions to the moon and beyond

ParaShield Flight Test – 12/4/2011

ADEPT Concept (NASA Ames)

Launch Configuration

ADEPT Stowed Prior to Deployment

ADEPT Deployed

ADEPT for Venus Entry

ADEPT Prototype

ADEPT in Arcject Testing

ADEPT Wind Tunnel Test Model

ADEPT Flight Test Video

Case Study: ParaShield

