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Thermal Protection Systems
• Types of thermal protection systems (TPS)
• Ablation
• Thermal conductivity
• Still heavily using/adapting slides from 2012 NASA Thermal 

and Fluids Analysis Workshop: https://tfaws.nasa.gov/
TFAWS12/Proceedings/ Aerothermodynamics%20Course.pdf

• Thermal protection slides in that package by John A. Dec/
NASA Langley
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TPS Outline
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Types of Thermal Protection Systems
• Ablative (non-reusable)

– Carries heat away by ablation processes and pyrolysis
– Effectively passive transpiration cooling
– Ideal for high heat flux/load entries

• Heat Sinks (reusable)
– Entry heating is absorbed by surface material - high specific heat, low 

thermal conductivity
– Heat is ultimately dissipated by surface cooling and/or jettisoning

• Active (reusable)
– Active cooling via fluid injection through surface into flow
– Complex; heavy; low technology readiness levels
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1D Conduction
• Basic law of one-dimensional heat conduction (Fourier 1822)

where
K=thermal conductivity (W/m°K)
A=area
dT/dx=thermal gradient

€ 

Q = −KA
dT
dx
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3D Conduction
General differential equation for heat flow in a solid

where
g(r,t)=internally generated heat
ρ=density (kg/m3)
c=specific heat (J/kg°K)
K/ρc=thermal diffusivity
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∇2T(r, t) +
g(r, t)

K
=

ρc
K

∂T(r, t)
∂t
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Simple Analytical Conduction Model
• Heat flowing from (i-1) into (i)

• Heat flowing from (i) into (i+1)

• Heat remaining in cell

TiTi-1 Ti+1

€ 

Qin = −KA
Ti − Ti−1
Δx

€ 

Qout = −KA
Ti+1 −Ti
Δx

€ 

Qout −Qin =
ρc
K

Ti( j +1) − Ti( j)
Δt

… …
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Finite Difference Formulation
• Time-marching solution

where

• For solution stability,

α =
k

ρCv

= thermal diffusivityd =
α∆t

∆x2

T
n+1
i

= T
n

i + d(Tn

i+1 − 2T
n

i + T
n

i−1)

∆t <
∆x2

2α
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Ablation
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Why Ablative Materials?
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How is TPS Chosen/Designed?
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Ablative TPS Chronology
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Some Available Ablatives
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TPS Mass Fractions
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Ablative Composition
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Pyrolyzing Ablators
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How Do Ablators Work?
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Surface Ablation Mechanisms
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Oxidation
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Other Mechanisms at Play
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TPS Modeling Approach
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Governing Differential Equations Derivation

1-dimensional control volume
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Conservation of Mass
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Conservation of Energy
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Conservation of Energy (2)
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Conservation of Energy (3)
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Conservation of Energy (4)
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Conservation of Energy (5)
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Adapting to a Moving Coordinate Frame
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Final Form of the Energy Equation
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Final Form of the Energy Equation (2)
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Thermal Protection System Sizing Approach
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Simplified Sizing Approach
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Simplified Sizing Approach (2)
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Simple Finite Difference Approach
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Stagnation Point Sizing Example
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Stagnation Point Sizing Example (2)


