Launch Vehicle Trajectory Analysis

- Gravity turns
- Estimating gravity and other losses
- Full launch trajectories (coming soon!)

© 2024 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Gravity Turn Trajectories

- Keep thrust vector aligned with velocity vector
- Let gravity affect the trajectory as it will
- Aim for insertion state appropriate to the desired mission

with velocity vector ory as it will opriate to the desired mission

Sounding Rocket Analysis

Gravity Turn Trajectories

from Wiesel, Spaceflight Dynamics

4

Estimating Gravity Losses

Start from conservation of energy

starting from sea level, $r_{init} \Rightarrow r_0$ $r_{final} \Rightarrow r_0 + h$

5

 $\frac{\mu}{r_{final}} = \frac{\Delta v_{grav \ loss}^2}{2} \frac{\mu}{r_{init}}$ $\Delta v_{grav\ loss} = \sqrt{2\mu \left(\frac{1}{r_{init}} - \frac{1}{r_{final}}\right)}$

Gravity Loss by Energy Conservation (cont.)

 $\Delta v_{grav\ loss,SL} = \sqrt{2\mu \left(\frac{r_{final} - r_{init}}{r_{init}r_{final}}\right)} = \sqrt{2\mu \left(\frac{h}{r_0(r_0 + h)}\right)}$

6

 $\mu = gr^2 = g_0 r_0^2$

 $\Delta v_{grav\ loss,SL} = \sqrt{\frac{2g_0 r_0 h}{r_0 + h}} = \sqrt{\frac{2g_0 h}{1 + h/r_0}}$

Gravity Loss by Energy Conservation (cont.)

 $\Delta v_{grav \ loss,SL} = \sqrt{\frac{2}{r}}$

Falcon 9 launch into 200 km insertion orbit

7

$$\frac{2g_0 r_0 h}{r_0 + h} = \sqrt{\frac{2g_0 h}{1 + h/r_0}}$$

$\Delta v_{grav\ loss,SL} = \sqrt{\frac{2(0.0098\ km/sec^2)\ 200\ km}{1 + (200\ km/6378\ km)}} = 1.950\ \frac{km}{sec}$

This approach is conservative - a better estimate would be to multiply by 0.8

Gravity Loss by Exact Methods

- This equation would be numerically integrated throughout the launch trajectory
- Minimizing gravity loss \implies get flight path angle to 0 (horizontal flight) as soon as possible
- But that might conflict with aerodynamic losses!

 $\Delta v_{\text{gravity loss}} = \int_{t_0}^{t_{\text{final}}} g \sin \gamma dt$

Drag Losses

 $D = \frac{1}{2}\rho v^2 S_{ref} c_D$ $\Delta v_{drag\ loss} = \int_{t_0}^{t_{burn}} \frac{D(t)}{m(t)} dt$

• *c_D* changes with Mach number, and is usually assumed to be a fraction of $C_{D_{max}}$

9

from Edberg and Costa, Design of Rockets and Space Launch Vehicles

Steering Losses

- When thrust is misaligned with velocity vector, there is an impact on Δv
- Sources could be angle of attack α or thrust steering angle δ

$$\Delta v_{steering \ loss} = \int_0^{t_b} T\nu [1 - \cos(d\theta)] d\theta$$

 $(\delta + \alpha)]dt$

10

Δv Summary for Saturn V Launching to LEO

Design speed Orbit speed = 9,267 m/s7,798 m/s

from Edberg and Costa, Design of Rockets and Space Launch Vehicles NIVERSITY OF **Sounding Rocket Trajectory Analysis ENAE 791 – Launch and Entry Vehicle Design** Ш

176 × 116 28.5 1,534 243 40

Ext Plant Ett

and the state

Steering loss Drag loss **Gravity** loss -243 m/s -40 m/s -1,534 m/s

Sample Summary of Launch Vehicle Δv **Losses**

Saturn V Launch to Translunar Injection

				AN CREAT	S - Contraction	PERSONAL PROPERTY AND				
Stage	ΔVideal	Gravity Loss		Drag Loss		Steering Loss		ΔV _{actual}	$\frac{\Delta V_{actu}}{\Delta V_{ido}}$	
	m/s	m/s	%	m/s	%	m/s	%	m/s	%	
	4,923	1,219	25.0	46	0.9	0	0	3,658	74	
2	5.242	335	6.4	0	0	183	3.5	4,724	90	
3	4,242	122	2.9	0	0	5	0.1	4,115	97	
Total	14,407	1,676	34.3	46	0.9	188	3.6	12,497	86	

from Edberg and Costa, Design of Rockets and Space Launch Vehicles UNIVERSITY OF MARYLAND **Sounding Rocket Trajectory Analysis ENAE 791 – Launch and Entry Vehicle Design** 12

Δv Summaries for Several Launch Vehicles

Vehicle	$h_p \times h_a$	i, deg	VLEO	ΔVgrav	∆ v _{steer}	∆ v _{drag}	A Vrot	Σ(Δ
Atlas I	149 × 607	7.0	7,946	1,395	167	110	- 345†	9.24
Delta 7925	175 × 319	33.9	7,842	1,150	33	136	- 347	8,81
Space Shuttle	-196 × 278	28.5	7,794‡	1,222	358†	107	- 345†	9,0
Saturn V	176 × 176	28.5	7,798	1,534	243	40	- 348	9,2
Titan IV/Centaur	157 × 463	28.6	7,896	1,442	65	156	-352	9,2

Source: [10].

*Negative sign indicates beneficial effect of Earth's rotation. Δv_{rot} values in [10] are given as 375 for Atlas I and 395 for the Shuttle, and may be in error. Total Δv_{s} shown include the corrected values for Δv_{rot} . ‡Injection occurs at approximately 111 km. **Additional $\Delta v = 144$ m/s needed to circularize orbit at apoapsis height $h_a = 278$ km.

A CALL AND AND A CALL AND AND AND A CALL AND

from Edberg and Costa, Design of Rockets and Space Launch Vehicles

