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The Space Environment

• Gravitation
• Electromagnetic Radiation
• Atmospheric Particles
• Solar Wind Particles
• Ionizing Radiation
• Micrometeoroids/Orbital Debris
• Spacecraft Charging
• Planetary Environments
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The Space Environment

“Space is big. Really big. You just
won't believe how vastly, hugely,
mind-bogglingly big it is. I mean,
you may think it's a long way
down the road to the chemist,
but that's just peanuts to space.”
– Douglas Adams, The Hitchhiker's

Guide to the Galaxy, 1979
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The Earth-Moon System
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Note: Earth and Moon are in
scale with size of orbits
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Photograph of Earth and Moon taken by Mars Odyssey
April 19, 2001 from a distance of 3,564,000 km
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The Electromagnetic Spectrum

Ref: Alan C. Tribble, The Space Environment  Princeton University Press, 1995
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The Solar Spectrum

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Solar Cycle

• Sun is a variable star
with 11-year period

• UV output of sun
increases thermal
energy of upper
atmosphere,
accelerating
atmospheric drag of
LEO spacecraft

• Measured as solar
flux at 10.7 cm
wavelength (=“F10.7”) Ref: Alan C. Tribble, The Space Environment

Princeton University Press, 1995
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Diurnal Variation of Atmosphere

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Atmospheric Density with Altitude

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Newtonian Flow

• Mean free path of
particles much larger than
spacecraft --> no
appreciable interaction of
air molecules

• Model vehicle/
atmosphere interactions
as independent perfect
inelastic collisions
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Newtonian Analysis

Mass flux = (density)(area swept)(velocity)
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Momentum Transfer

• Momentum
perpendicular to
wall is reversed at
impact

• “Bounce” momentum
is transferred to
vehicle

• Momentum parallel
to wall is unchanged
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Lift and Drag

F

D F V A= =sin sinα ρ α2 2 3

V
D

L

α

L F V A= =cos sin cosα ρ α α2 2 2

c
L

V A
L = =

1
2

4
2

2

ρ
α αsin cos

c
D

V A
D = =

1
2

4
2

3

ρ
αsin L

D = =
cos
sin

cot
α
α

α



The Space Environment
Principles of Space Systems Design

Orbit Decay from Atmospheric Drag

Ref: Alan C. Tribble, The Space Environment  Princeton University Press, 1995
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Makeup ∆∆∆∆V Due To Atmospheric Drag

Ref: Alan C. Tribble, The Space Environment  Princeton University Press, 1995
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Atmospheric Constituents at Altitude

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Atomic Oxygen Erosion Rates

• Annual surface erosion at solar max
• Orbital altitude 500 km
Material Erosion Rate (mm/yr)
Silver .22
Chemglaze Z302 .079
Mylar .071
Kapton .061
Epoxy .048
Carbon .020
Teflon .00064
Aluminum .0000076
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The Earth’s Magnetic Field

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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The Van Allen Radiation Belts

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Cross-section of Van Allen Radiation Belts

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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Electron Flux in Low Earth Orbit

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems   Oxford University Press, 1994
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The Origin of a Class X1 Solar Flare
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Heavy Ion Flux

Ref: Neville J. Barter, ed., TRW Space Data,  TRW Space and Electronics Group, 1999

Background Solar Flare



The Space Environment
Principles of Space Systems Design

Radiation Dose vs. Orbital Altitude

Ref: Neville J. Barter, ed., TRW Space Data,  TRW Space and Electronics Group, 1999

300 mil (7.6 mm) Al shielding
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Trackable Objects On-orbit
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Micrometeoroids and Orbital Debris
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MMOD Sample Calculation
Space Station module - cylindrical,
15’ diam. X 43’ long

Surface area=221 m2

Flux value for one hit in 20 years

Flux=2.26x10-4 hits/m2-yr (3mm)

For 0.1 hits/20 years, allowable
flux= 2.26x10-5 hits/m2-yr (9 mm)
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Damage from MMOD Impacts
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Long Duration Exposure Facility (LDEF)

• Passive experiment
to test long-term
effects of space
exposure

• 57 experiments in
86 trays

• Deployed April,
1984

• Retrieved January,
1990
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Surprising Results from LDEF

• Presence of C-60 (“buckeyballs”) on impact
site

• Much higher incidence of MMOD impacts on
trailing surfaces than expected

• Local thermal hot spots did surprising levels
of damage to blankets and coatings

• Thermal blankets are effective barriers to
smaller high velocity impacting particles

• Anomalies are typically due to design and
workmanship, rather than materials effects
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Typical MMOD Penetration from LDEF
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Spacecraft Charging

Ref: Alan C. Tribble, The Space Environment  Princeton University Press, 1995
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Comparison of Basic Characteristics

Quantity Earth Free Space Moon Mars

Gravitational
Acceleration

9.8 m/s2

(1 g)
– 1.545 m/s2

(.16 g)
3.711 m/s2

(.38 g)

Atmospheric
Density

101,350 Pa
(14.7 psi)

– – 560 Pa
(.081 psi)

Atmospheric
Constituents

78% N2

21% O2

– – 95% CO2

3% N2

Temperature
Range

120°F
-100°F

150°F
-60°F

250°F
-250°F

80°F
-200°F

Length
of Day

24 hr 90 min –
Infinite

28 days 24h 37m
22.6s
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