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Orbital Mechanics

• Energy and velocity in orbit
• Elliptical orbit parameters
• Orbital elements
• Coplanar orbital transfers
• Noncoplanar transfers
• Time  and flight path angle as a function of

orbital position
• Relative orbital motion (“proximity operations”)
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Energy in Orbit

• Kinetic Energy

• Potential Energy

• Total Energy
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Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular and parabolic
orbits
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Some Useful Constants

• Gravitation constant µ = GM
– Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2

– Sun: 1.327x1011 km3/sec2

• Planetary radii
– rEarth = 6378 km
– rMoon = 1738 km
– rMars = 3393 km
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Classical Parameters of Elliptical Orbits
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Basic Orbital Parameters
• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum
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The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics  Oxford University Press, 1993
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The Hohmann Transfer
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First Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V
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Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V
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Limitations on Launch Inclinations
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Differences in Inclination
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Choosing the Wrong Line of Apsides
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Simple Plane Change
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Optimal Plane Change

vperigee v1 vapogee
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First Maneuver with Plane Change ∆∆∆∆i1

• Initial vehicle velocity

• Needed final velocity

• Delta-V
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Second Maneuver with Plane Change ∆∆∆∆i2

• Initial vehicle velocity

• Needed final velocity

• Delta-V
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Sample Plane Change Maneuver
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Bielliptic Transfer
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Coplanar Transfer Velocity Requirements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics  Oxford University Press, 1993
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Noncoplanar Bielliptic Transfers
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Calculating Time in Orbit
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Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

➥M=mean anomaly
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Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges
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Patched Conics

• Simple approximation to multi-body motion (e.g.,
traveling from Earth orbit through solar orbit into
Martian orbit)

• Treats multibody problem as “hand-offs” between
gravitating bodies --> reduces analysis to
sequential two-body problems

• Caveat Emptor: There are a number of formal methods to
perform patched conic analysis. The approach presented here is a
very simple, convenient, and not altogether accurate method for
performing this calculation. Results will be accurate to a few
percent, which is adequate at this level of design analysis.
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Example: Lunar Orbit Insertion
• v2 is velocity of moon

around Earth
• Moon overtakes

spacecraft with velocity
of (v2-vapogee)

• This is the velocity of the
spacecraft relative to the
moon while it is
effectively “infinitely”
far away (before lunar
gravity accelerates it) =
“hyperbolic excess
velocity”

vapogee

v2
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Planetary Approach Analysis

• Spacecraft has vh hyperbolic excess
velocity, which fixes total energy of
approach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approach
is tangent to desired final orbit at periapse
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∆∆∆∆V Requirements for Lunar Missions

To:

From:

Low Earth
Orbit

Lunar
Transfer
Orbit

Low Lunar
Orbit

Lunar
Descent
Orbit

Lunar
Landing

Low Earth
Orbit

3.107
km/sec

Lunar
Transfer
Orbit

3.107
km/sec

0.837
km/sec

3.140
km/sec

Low Lunar
Orbit

0.837
km/sec

0.022
km/sec

Lunar
Descent
Orbit

0.022
km/sec

2.684
km/sec

Lunar
Landing

2.890
km/sec

2.312
km/sec
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Hill’s Equations (Proximity Operations)

˙̇ ˙x n x ny adx= + +3 22

˙̇ ˙y nx ady= − +2

˙̇z n z adz= − +2

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics
Oxford University Press, 1993
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Clohessy-Wiltshire (“CW”) Equations
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“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite
Servicing and Resupply, 15th USU Small Satellite Conference, 2001
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“R-Bar” Approach

• Approach from along
the radius vector (“R-
bar”)

• Gravity gradients
decelerate spacecraft
approach velocity - low
contamination
approach

• Used for Mir, ISS
docking approaches Ref: Collins, Meissinger, and Bell, Small Orbit Transfer

Vehicle (OTV) for On-Orbit Satellite Servicing and
Resupply, 15th USU Small Satellite Conference, 2001
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References for Lecture 3

• Wernher von Braun, The Mars Project
University of Illinois Press, 1962

• William Tyrrell Thomson, Introduction to
Space Dynamics Dover Publications, 1986

• Francis J. Hale, Introduction to Space
Flight Prentice-Hall, 1994

• William E. Wiesel, Spaceflight Dynamics
MacGraw-Hill, 1997

• J. E. Prussing and B. A. Conway, Orbital
Mechanics Oxford University Press, 1993


