Orbital Mechanics

- Energy and velocity in orbit
- Elliptical orbit parameters
- Orbital elements
- Coplanar orbital transfers
- Noncoplanar transfers
- Time and flight path angle as a function of orbital position
- Relative orbital motion ("proximity operations")

Energy in Orbit

Kinetic Energy

$$K.E. = \frac{1}{2}mv^2 \Longrightarrow \frac{K.E.}{m} = \frac{v^2}{2}$$

Potential Energy

$$P.E. = -\frac{m\mu}{r} \Longrightarrow \frac{P.E.}{m} = -\frac{\mu}{r}$$

• Total Energy $Const. = \frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a}$ <---Vis-Viva Equation

Implications of Vis-Viva

Circular orbit (r=a)

$$v_{circular} = \sqrt{\frac{\mu}{r}}$$

Parabolic escape orbit (a tends to infinity)

$$v_{escape} = \sqrt{\frac{2\mu}{r}}$$

- Relationship between circular and parabolic orbits $_{V_{escape}}=\sqrt{2}v_{circular}$

Some Useful Constants

- Gravitation constant μ = GM
 - Earth: 398,604 km³/sec²
 - Moon: 4667.9 km³/sec²
 - Mars: 42,970 km³/sec²
 - Sun: 1.327x10¹¹ km³/sec²
- Planetary radii
 - r_{Earth} = 6378 km
 - r_{Moon} = 1738 km
 - r_{Mars} = 3393 km

Classical Parameters of Elliptical Orbits

Basic Orbital Parameters

• Semi-latus rectum (or parameter)

$$p = a(1 - e^2)$$

Radial distance as function of orbital position

$$r = \frac{p}{1 + e\cos\theta}$$

Periapse and apoapse distances

$$r_p = a(1-e)$$
 $r_a = a(1+e)$

Angular momentum

$$\vec{h} = \vec{r} \times \vec{v} \qquad h = \sqrt{\mu p}$$

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

The Hohmann Transfer

First Maneuver Velocities

• Initial vehicle velocity $v_1 = \sqrt{\frac{\mu}{r_1}}$ • Needed final velocity $v_{perigee} = \sqrt{\frac{\mu}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2}}$ • Delta-V $\Delta v_1 = \sqrt{\frac{\mu}{r_1}} \left(\sqrt{\frac{2r_2}{r_1 + r_2}} - 1\right)$

Second Maneuver Velocities

• Initial vehicle velocity $v_{apogee} = \sqrt{\frac{\mu}{r_2}} \sqrt{\frac{2r_1}{r_1 + r_2}}$

• Needed final velocity $v_2 = \sqrt{\frac{\mu}{2}}$

• Delta-V $\Delta v_2 = \sqrt{\frac{\mu}{r_2}} \left(1 - \sqrt{\frac{2r_1}{r_1 + r_2}} \right)$

Limitations on Launch Inclinations

Differences in Inclination

Choosing the Wrong Line of Apsides

Simple Plane Change

Optimal Plane Change

First Maneuver with Plane Change Δi_1

- Initial vehicle velocity
- Needed final velocity

$$\begin{aligned} \mathbf{ty} \quad \mathbf{v}_1 &= \sqrt{\frac{\mu}{r_1}} \\ \mathbf{y} \quad \mathbf{v}_p &= \sqrt{\frac{\mu}{r_1}} \sqrt{\frac{2r_2}{r_1 + r_2}} \end{aligned}$$

• Delta-V
$$\Delta v_1 = \sqrt{v_1^2 + v_p^2 - 2v_1v_p\cos(\Delta i_1)}$$

Second Maneuver with Plane Change Δi_2

• Initial vehicle velocity $v_a = \sqrt{\frac{\mu}{r_2}} \sqrt{\frac{2r_1}{r_1 + r_2}}$

• Needed final velocity $v_2 = \sqrt{\frac{\mu}{r_2}}$

• Delta-V
$$\Delta v_2 = \sqrt{v_2^2 + v_a^2 - 2v_2v_a\cos(\Delta i_2)}$$

Sample Plane Change Maneuver

Optimum initial plane change = 2.20°

Bielliptic Transfer

Coplanar Transfer Velocity Requirements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Noncoplanar Bielliptic Transfers

Calculating Time in Orbit

Time in Orbit

Period of an orbit

$$P = 2\pi \sqrt{\frac{a^3}{\mu}}$$

Mean motion (average angular velocity)

$$n = \sqrt{\frac{\mu}{a^3}}$$

• Time since pericenter passage

$$M = nt = E - e\sin E$$

→M=mean anomaly

Dealing with the Eccentric Anomaly

Relationship to orbit

$$r = a(1 - e\cos E)$$

Relationship to true anomaly

$$\tan\frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2}$$

Calculating M from time interval: iterate

$$E_{i+1} = nt + e\sin E_i$$

until it converges

UNIVERSITY MARYLAN

Patched Conics

- Simple approximation to multi-body motion (e.g., traveling from Earth orbit through solar orbit into Martian orbit)
- Treats multibody problem as "hand-offs" between gravitating bodies --> reduces analysis to sequential two-body problems
- Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here is a very simple, convenient, and not altogether accurate method for performing this calculation. Results will be accurate to a few percent, which is adequate at this level of design analysis.

Example: Lunar Orbit Insertion

- v₂ is velocity of moon around Earth
- Moon overtakes spacecraft with velocity of (v₂-v_{apogee})
- This is the velocity of the spacecraft relative to the moon while it is effectively "infinitely" far away (before lunar gravity accelerates it) = "hyperbolic excess velocity"

Planetary Approach Analysis

- Spacecraft has v_h hyperbolic excess velocity, which fixes total energy of approach orbit $\frac{v^2}{2} - \frac{\mu}{r} = -\frac{\mu}{2a} = \frac{v_h^2}{2}$
- Vis-viva provides velocity of approach

$$v = 2\sqrt{\frac{v_h^2}{2} + \frac{\mu}{r}}$$

 Choose transfer orbit such that approach is tangent to desired final orbit at periapse

$$\Delta v = 2 \sqrt{\frac{v_h^2}{2} + \frac{\mu}{r_{orbit}}} - \sqrt{\frac{\mu}{r_{orbit}}}$$

ΔV Requirements for Lunar Missions

To:	Low Earth	Lunar	Low Lunar	Lunar	Lunar
	Orbit	Transfer	Orbit	Descent	Landing
From:		Orbit		Orbit	
Low Earth		3.107			
Orbit		km/sec			
Lunar	3.107		0.837		3.140
Transfer	km/sec		km/sec		km/sec
Orbit					
Low Lunar		0.837		0.022	
Orbit		km/sec		km/sec	
Lunar			0.022		2.684
Descent			km/sec		km/sec
Orbit					
Lunar		2.890		2.312	
Landing		km/sec		km/sec	

Space Systems Laboratory – University of Maryland

Hill's Equations (Proximity Operations)

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Clohessy-Wiltshire ("CW") Equations

$$x(t) = \left[4 - 3\cos(nt)\right]x_o + \frac{\sin(nt)}{n}\dot{x}_o + \frac{2}{n}\left[1 - \cos(nt)\right]\dot{y}_o$$

$$y(t) = 6 \left[\sin(nt) - nt \right] x_o + y_o - \frac{2}{n} \left[1 - \cos(nt) \right] \dot{x}_o + \frac{4\sin(nt) - 3nt}{n} \dot{y}_o$$

$$z(t) = z_o \cos(nt) + \frac{\dot{z}_o}{n} \sin(nt)$$

 $\dot{z}(t) = -z_o n \sin(nt) + \dot{z}_o \sin(nt)$

"V-Bar" Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001

"R-Bar" Approach

- Approach from along the radius vector ("Rbar")
- Gravity gradients decelerate spacecraft approach velocity - low contamination approach
- Used for Mir, ISS docking approaches

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001 Orbital Mechanics

Principles of Space Systems Design

References for Lecture 3

- Wernher von Braun, The Mars Project
 University of Illinois Press, 1962
- William Tyrrell Thomson, *Introduction to Space Dynamics* Dover Publications, 1986
- Francis J. Hale, Introduction to Space Flight Prentice-Hall, 1994
- William E. Wiesel, Spaceflight Dynamics MacGraw-Hill, 1997
- J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

