Power Systems Design

- Definitions of energy and power
- Power generation systems
- Energy storage systems
- Integrated systems analysis

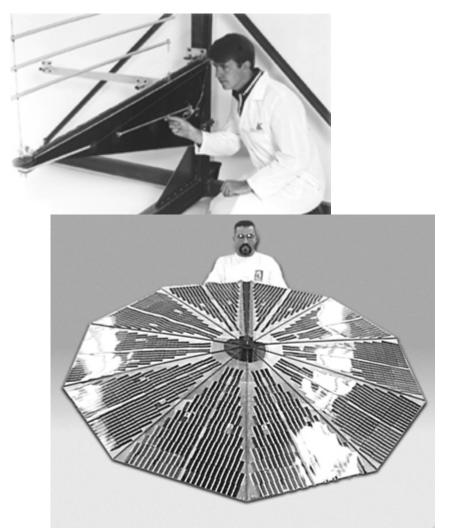
© 2002 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Energy and Power - Not the Same!!!

- Energy the capacity of a physical system to do work (J, N-m, kWhr)
- Power time rate of change of energy (W, N-m/sec, J/sec)
- We are interested in generating power; we store and use energy at a given power level.

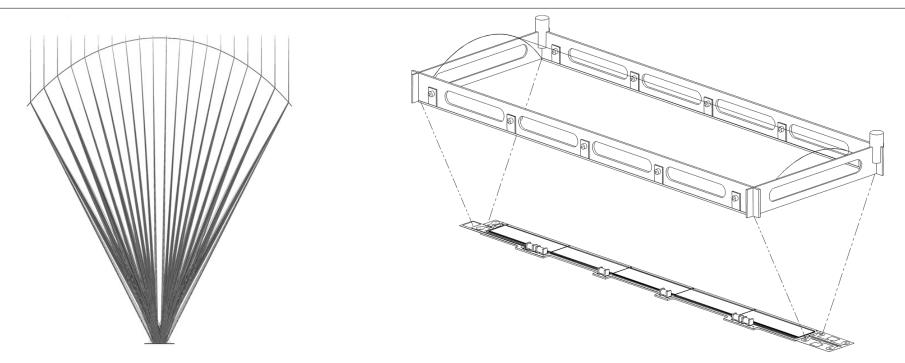
Solar Power

- Insolation constant = 1394 W/m² at 1 AU
- Varies with inverse square of distance
- Power conversion technologies
 - Photovoltaic
 - Thermodynamic cycle



Future Advances in Photovoltaics

- Multi-Band Gap Concentrator Arrays
 - High efficiency (35%)
 - Low mass (2-300 W/kg)
 - Low area (500 W/m²)
- Ultra-lightweight arrays
 - Reasonable efficiencies (15-20%)
 - Very low mass (500-1000 W/kg)
 - Larger area (200 W/m2)
- Both technologies aimed at <\$300/W


Ultra-lightweight Photovoltaic Arrays

- Solely optimized for minimum areal mass
- Tends to use simpler (lower efficiency cells)
- AEC-Able Ultraflex
 - 115 W/kg (Si 17%)
 - 140 W/kg (GaAs 23%)

Concentrator Multi-Band Gap Arrays

- Multi-band gap GaAs cells for high efficiency
- Concentrator increases solar insolation, reduces area of cells, provides self-annealing

Sample Concentrator Array

- AEC-Able
 SCARLETT array
- Flown on Deep Space-1
- 299 W/m²
- 44 W/kg

Photovoltaic Array Sizing Calculation

- Power requirement = 3 kW
- Si cells, 17% efficiency

 $A = \frac{P_{req}}{I_s \eta} = \frac{3000 W}{1394 W/m^2 (.17)} = 12.66 m^2$

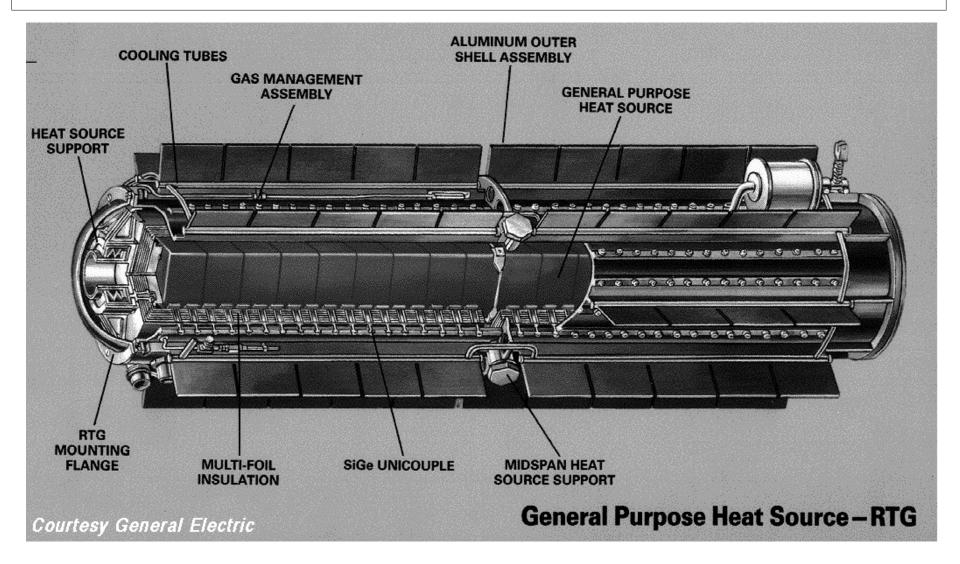
Power density = 115 W/kg

$$m_{array} = \frac{P}{\rho_{power}} = \frac{3000 \, W}{115 \, W/kg} = 26.1 \, kg$$

NASA Solar Array Technology Projections

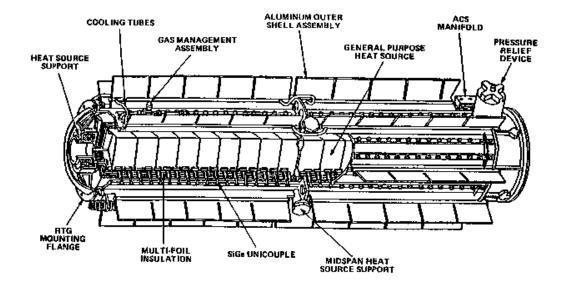
	State of Technologies	Near Term	Future
Crystalline Cell Technology	Silicon - 14.5% GaAs/(Ge) - 18.5% Production Levels	GaInP ₂ GaAs/Ge - 24% in large area, production GaInP ₂ GaAs/Ge - 26% limited quantities	+35% Cells (planar or concentrator applications)
Thin Film Cell Technology	Not Available	Amorphous S i - 9% AMO CIGS - 6% AMO - Terrestrial -	 > 15% CIS, CIGS, CIS₂, AmSi High efficiency thin film tech., low cost, lightweight, monolithic interconnections
Array Technology	30-50 W/ kg - Rigid Panels 60 W/kg - Flexible panels Cost ~ \$1000-\$2000/W	Ultraflex - 115 W/kg (Si), 140 W/kg (GaAs) both mission and sizing specified/limited SCARLET concentrator - 50-60 W/kg radiation hardness, low cost \$500 - \$700/W 300W/M ²	Lightweight array structures (inflatables, shaped memory mech., hybrid designs) Goal: MBG → 2-300 W/kg, 500 W/m ² TF → 1000W/kg, 200 W/m ² \$300/W High voltage array designs, 300-1000V reduce/eliminate PMAD, direct drive EP Large area concentrators/dense arrays Synergistic SC subsystems, combine power & communications, power and propulsion at the SC level Integrated energy conversion/power storage concepts

WNIVERSITY OF MARYLAND

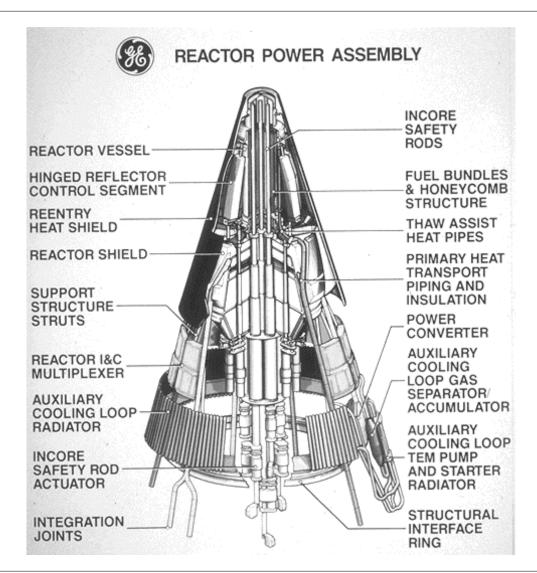

Nuclear Power

- Radioisotopic Thermal Generators (RTGs)
 - Generate electricity from heat of radioactive decay
 - Generally use ²³⁸Pu as heat source, thermionic conversion
 - Units up to a few hundreds of watts
- Nuclear dynamic
 - Nuclear reactors for heat source, dynamic power system for conversion
 - Smallest effective size ~ 100 kW

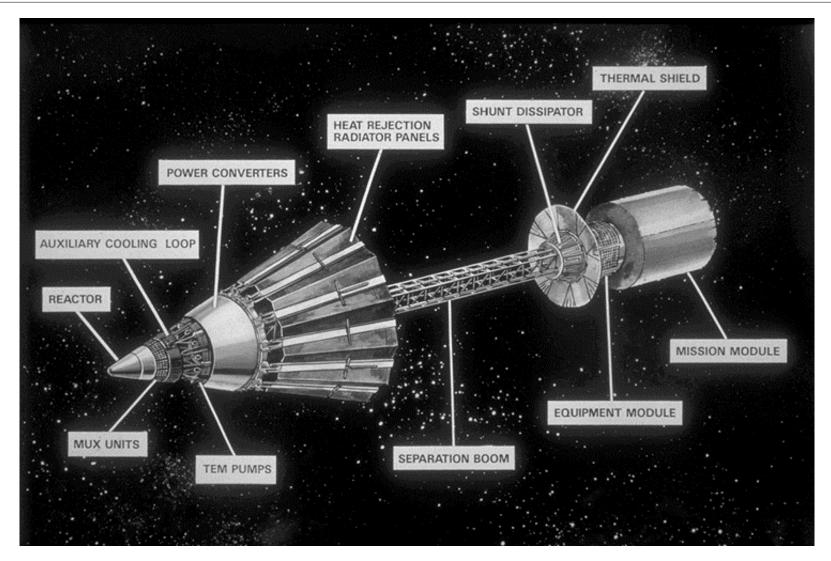
UNIVERSITY OF MARYLAND


Galileo RTG

Galileo RTG Specifications


The Galileo RTG Operated Perfectly

- Power Out BOL/EOL = 290/250 W_e
- Mass =55 kg
- Dimensions = 114 cm long/42 cm diam.
- Hot/Cold Junction T °C- 1000/300
- Mass ²³⁸Pu 7.561 kg
- Thermal Power = 4,234 W_t



SP-100 Reactor Design

SP-100 Reactor Installation

Representative Space Nuclear Power Data

	United States		Former Soviet Union		
Features	SNAP-10A	SP-100	Romashka	RORSAT	TOPAZ-I
Flt. Status	1965	Design	1965-?	1967-?	1987-?
Power-kWt	46	2,000	40	<100	150
Power-kWe	0.65	100	0.8	<5	5-10
Convertor	TE	TE	TE	TE	π
Fuel	U-ZrH _x	UN	UC2	U-Mo	U02
kg 235U	4.3	140	49	25	12
Reactor Mass-kg	435	5,422	455	<390	320
Coolant	NaK	Li	None	NaK	NaK

NASA Thermal Conversion Tech Projections

<u>Technology</u>	Parameter	State-of-the-Art	Near Term	Future
Stirling	Power Level	25 kW	150 W (ARPS)	100-500 kW
Othing	Life	1,000 hrs	45,000 hrs	7-10 yrs
	Peak Cycle Temp	1050 K	950 K	1300 [°] K
	Efficiency	25-40%	20-30%	25-40%
	Specific Mass	6 kg/kW	15-18 kg/kW	5 kg/kW
Brayton	Power Level	2 to 10 kW	2 to 100 kW	2 kW to MW's
	Life	40,000 hrs	4-6 yrs	7-10 yrs
	Peak Cycle Temp	Up to 1140	1300 K	1500 K
	Efficiency	· K	20-30%	20-30%
	Specific Mass	20-30%	6-50kg/kW	5-6 kg/kW
	,	20-70 kg/kW	-	
AMTEC	Power Level	·	Up to 200 W	10 to 50 kW
	Life	500-1500 W	(ARPS)	10-15 yrs
	Peak Cycle Temp	1400 hr	15 yrs	1225 K
	Efficiency	970 K	1125 K	25-30%
	Specific Mass	13%	~15%	5-7 kg/kW
	·	16-25 kg/kW	17 kg/kW	
Thermionic	Power Level			Up to 100 kW
	Life	4.5 kW (68)	Up to 10 kW	7-10 yrs
	Peak Cycle Temp	1-5 yrs	4-6 yrs	2200 K
	Efficiency	1900 K	2000 K	15-20%
	Specific Mass	4-12%	12-15%	2-3 kg/kW
	•	5 kg/kW	4 kg/kW	-

NASA Battery Technology Projections

	Space Powe	r Technology Pa	ths - Batteries	
Technology	Parameter	State-of-the-Art	Near Term	Thru Future
Ni-Cd	Cell Wh/kg Battery Wh/kg Wh/c Life-years LEO/GEO DOD - % - LEO/GEO	30-45 25-37 30-45 3/6 15/60		
IPV Ni-H ₂	Cell Wh/kg Battery Wh/kg Wh/z Life-years LEO/GEO DOD - % - LEO/GEO Rel. Cost	<u>Space Station - LEO</u> 47 27 10 5/12 35/70 1.0	80 55 25 8/15 40/70 0.8	Lightweight Ni 100 75 40 10/20 40/80 0.5
CPV Ni-H ₂	Cell Wh/kg Battery Wh/kg	45-60 36-50	80 70	Lightweight Ni/Optimized Design 100 85
•	Why Why Life-years LEO/GEO DOD - % - LEO/GEO Rel. Cost	30 5/12 35/70 1.0	40 8/15 40/70 0.6	60 10/20 40/80 0.5
Ni-MH	Cell Wh/kg Battery Wh/kg Wh/z Life-years LEO/GEO DOD - % - LEO/GEO Rel. Cost	Prismatic 53 44 50-75 5-LEO 35 1.0	Bipolar N/A 80 175 3/10 40/60 0.5	Bipolar/Lightweight Ni N/A 100 250 5/20 4075 0.5
Li-Ion	Cell Wh/kg Battery Wh/kg Wh/2 Life-years LEO/GEO DOD - % - LEO/GEO Rel. Cost	1.0 <u>Commercial</u> 100 80 160 N/A N/A 1.0	Liquid >100 85 130 2/10 40/60 0.5	Polymer >200 175 220 5/20 50/75 0.2
NaS	Cell Wh/kg Battery Wh/kg Wh/ <i>c</i> Life-years LEO/GEO DOD - % - LEO/GEO	110 90 60 3/10 60/80		

Fuel Cells

- Electrochemical system: $2H_2+O_2-->2H_2O+e^-$
- Energy storage system, not power generation - requires consumables to continue to generate power
- One-way system generates potable water
- Regenerative systems under development
 to act like high-capacity batteries

Example: Shuttle Fuel Cells

- LOX Tank: 36.8" dia., empty mass 201 lbs, holds 781 lbs of LOX
- LH2 Tank: 45.5" dia., empty mass 216 lbs, holds 92 lbs of LH2
- Reactor: 14"x15"x40", 255 lbs
 28VDC output; 7kW continual, 12kW peak
- Nominal consumables usage rates:
 4 lb/hr LOX, 0.6 lb/hr LH2 at 220 A -->
 0.339 kg/kW-hr or 2950 W-hr/kg reactants

NASA Flywheel Technology Projections

Metric	Existing Battery Systems**	Flywheel SOA*	Flywheel Goals
Effective, Usable Specific Energy (SE) in LEO	< 3 Whr/Ib	~10 Whr/lb	>20 Whr/Ib
Cycle life (at above SE levels)	~30,000	TBD (estimated at 50,000)	>75,000
Energy Storage (turn around) Efficiency	68-80%	85%	>90%
Cost	\$0.5-3M	Comparable	> 25% reduction

* Based on laboratory units extrapolated to flight

configuration. Current TRL ~ 4.3-5.3

** Includes associated hardware (e.g., battery regulator)

Integrated Power Systems

- Photovoltaics excel at mid-levels of power generation - as long as the sun is visible
- Need energy storage to make it through dark periods (e.g., night side of low earth orbits)
- Power generation requirements must be increased to recharge energy storage devices before next dark period

Boost Module Power Generation

- Need 200 W to support boost module systems during LEO loitering prior to vehicle assembly
- ~50 minutes of daylight, 40 minutes of night on each orbit
- Need 133 W-hr of energy each night
- NiMH batteries at 40 W-hrs/kg --> 3.33 kg
- Have to recharge during day pass --> 160 W
- Total PV power requirement = 360 W
- Actually need additional power for nonideal efficiencies, losses, DOD, etc.

Space Systems Laboratory – University of Maryland

Power Management and Distribution

- Power has to be regulated to desired voltage, transmitted, controlled, and monitored
- Traditionally 28VDC system (heritage from aircraft)
- Resistive power loss is I²/R (prefer higher voltage, lower current
- New technologies under consideration (100VDC [ISS], 400VAC/2000Hz)

Synopsis of NASA Power Tech Estimates

Power Tech	nology	Performance Metrics
PV GaAs		40 W/kg, 19%
	GaInP/GaAs (2 Junction)	60 W/kg, 23%
	GaInP/GaAs/Ge (3 Junction)	80 W/kg, 26%
	InGaAIP/GaAs/InGaAsN/Ge (4 J)	100 W/kg, 35%
	Single Crystal Si	90 W/kg, 17%
	CulnGaSe2 (CIGS)	200 W/kg, 15%
Energy	NiCd	25 Wh/kg, 25% DOD (LEO), 60% DOD (GEO)
Storage	NiH2 (CPV or SPV)	35 Wh/kg, 35% DOD (LEO), 70% DOD (GEO)
J	NIMH	100 Wh/kg, 40% DOD (LEO), 80% DOD (GEO)
	Li Ion	100 Wh/kg, 40% DOD (LEO), 60% DOD (GEO)
	Solid Li Polymer	175 Wh/kg, 50% DOD (LEO), 80% DOD (GEO)
	Flywheels	44 Wh/kg, 89% DOD (LEO & GEO)
PMAD	SOA	50 W/kg, 85%
	Near Term	125 W/kg, 90%
	Far Term	250 W/kg, 90%

Note: Some variations on these metrics were used based on operating environment and mission duration

