Structural Design

- Loads and Load Sources
 - Designing or Critical Loads
 - Load Information / Estimation
- Piece Parts Analysis
 - Margin of Safety Definition
 - Factors of Safety to use
 - Summary Table
- Important Structural Concepts
 - Primary/Secondary Structure
 - Failsafe & Fracture Critical Structure
 - Aerospace Materials
 - Structural Failure

UNIVERSITY OF MARYLAND

Loads

- "Designing Load" is the load that determines one or more structural characteristic of the part:
 - shape, thickness, strength, stiffness, material...
- Critical Load (somewhat synonymous) is more exactly the load that gives the minimum margin of safety (MS) for a part
 - MS represents the amount of extra structural capability you have over the applied load (elbow room)
- Examples of Critical Loads
 - pressurization loads for a rocket casing
 - launch loads for a spacecraft
 - thermal loads for a propulsion subsystem
 - crash loads for a car

Load Sources

- Where do these loads come from?
- For every part (subsystem) in your design, you should review every phase of its life and identify all loads that have the potential to be critical:
 - manufacturing & assembly
 - test (qualification, proof test)
 - transportation (truck or launch)
 - operation
 - contingencies (crash landing)
- Obtain or estimate loads
 - look up loads in reference books
 - ask other groups to determine loads
 - guestimate for the purposes of starting analysis
- Calculate all margins of safety

UNIVERSITY OF MARYLAND

Launch Vehicle Loads

- Max Q Aerodynamic Loads
 - Q = ρ V² / 2
 - maximum pressure and bending on vehicle
- Max g's
 - usually occurs at stage burnout
 - maximum axial load on vehicle and payload
- Abrupt environmental & vehicle changes
 - internal and external pressure drop
 - dramatic thermal changes
- Staging shock loads

UNIVERSITY OF

- high g's, high frequency
- Random vibration and acoustics
 - equiv. g's = sqrt (π PSD f_n Q / 2)
- Some of these loads apply to payload as well

Launch Vehicle Failures

- LV failures are tied to the following subsystems
 - Propulsion (70%)
 - Avionics (11%)
 - Separation (8%)
 - Electrical (7%)
 - Structural (2%)
- Structural Failure Relatively Rare
 - AmRoc, Shuttle, Pegasus
- Propulsion or Control System Failure More Common
 - Conestoga, LLV, Ariane V

Spacecraft On-Orbit Loads

- Accelerations
 - orbital accelerations
 - gravity gradient
 - spinning
 - on-board disturbances
 - thrusting (attitude control, reboost)
- Thermal Loads
 - sun / shadow thermal gradients
 - eclipse effects (thermal snap)
- Other Special Cases
 - EVA loads (corners & edges)
 - rendezvous & docking
- Generally spacecraft are designed by launch loads!

UNIVERSITY OF MARYLAND

Planetary Vehicle Loads

- Vibration loads from traversing rough terrain
- Launch / landing loads
- Maneuvering loads
 - tight turn
 - driving on an incline
 - loosing traction / support on one wheel
- Crash loads
 - driving into a big boulder
 - rolling vehicle in unstable soil
 - safety is primary consideration

Piece Parts Analysis

- Structural analysis of a system consists of at least the following three tasks
 - Load Cycle Modeling (system-level) iterative process
 - Piece-Part Analysis (static) minimum margins of safety
 - Fracture and Fatigue Analysis (dynamic) safe life analysis
- Piece Parts Analysis
 - Identify all loads on each part / subsystem
 - Calculate margins of safety
 - Tabulate minimum margins of safety
- Example: OTD Boom Piece Parts Analysis

Factors & Margins of Safety

- Limit Loads: maximum loads expected (applied loads)
- Yield Load and Ultimate Load
- Factors of Safety : numbers imposed by the Customer (or your own good sense) that reflect
 - > how uncertain you are of the load or structure
 - > how safe you want to be
 - > examples: 10 for bridges, 5 for ground handling equip, 2 for a/c
- Margins of Safety are calculated as follows:

$$MS = \frac{Allowable \ Load}{Applied \ Load \ x \ FS} - 1.0$$

• <u>Beware</u>: There are other definitions of these terms in engineering, but the above approach is the most common in Aerospace

UNIVERSITY OF MARYLAND

Primary Structure

- Primary, Secondary, & Tertiary Structure
 - Primary structure is the system's backbone (carries all of the major loads imposed on vehicle)
 - Secondary structure includes all essential appendages and support structures (such as solar arrays, antennas, & fuel tanks)
 - Tertiary structures are less-essential mounting hardware (brackets, component housings, connector panels)
- Example of primary structure
 - Thin-walled cylindrical launch vehicle
 - Challenge is to figure out how to react shear & torsion stresses
 - Buckling of skin is most common failure mode
 - Buckling of a cylindrical section:

 σ_{crit} = E t / R sqrt [3(1-v²)]

UNIVERSITY OF MARYLAND

Critical Structure

- Critical Items List (CIL) contains all parts that
 - are deemed criticality 1 by FMEA (ie, single point failures)
 - are fracture critical (ie, stressed to the point where a flaw will grow to critical size)
- Failsafe & Fracture Critical Structure
 - Catastrophic failure is generally defined by customer
 - Failsafe structure can take redistributed loads after failure (ie, not single point failures); shall release no hazardous mass; shall not change dynamics significantly; shall have no fatigue problems
 - Low-risk structure is not primary structure; has only a remote possibility of failure; will not propagate a crack in 4 lifetimes

 $\sigma_{max} < F_{tu} / [4 (1-0.5 R) K_t]$

- Fracture critical parts must be labeled and analyzed as such, then inspected, treated, and tracked more carefully than conventional parts
- Crack Growth Analysis (FLAGRO)
 - All FC parts must be shown good for four lifetimes of load cycles with an initial flaw (determined by NDI)

Aerospace Materials

- Comparison of specific stiffness, specific strength, and buckling parameter for a variety of aerospace metals and composites
- Definition of Structural Failure
 - Detrimental Yield vs Textbook Yield
 - deformation that detrimentally affects functionality of system
 - 0.2% Tresca yield condition (assumes system linear in first place)
 - Ultimate Failure
 - any material rupture or loss of functionality

Material Strength & Stiffness

• Typical Yield & Ultimate Strengths

– aluminum	yld: 37 ksi	ult: 42 ksi
 low strength steel 	yld: 36 ksi	ult: 58 ksi
 high strength steel 	yld:102 ksi	ult:116 ksi
– Titanium	yld:134 ksi	ult:145 ksi

Stiffness versus Strength Designs

– aluminum	w : 0.10 E/ w : 100	σ _u ∕ <i>w</i> : 420
– Low $\sigma_{\rm u}$ steel	w : 0.28 E/ w : 102	σ _u / <i>w</i> : 204
- high $\sigma_{ m u}$ steel	w : 0.29 E/ w : 98	σ _u ∕ <i>w</i> ∷ 390
– titanium	w : 0.16 E/ w : 109	σ _u / <i>w</i> : 906

Conclusion: for aerospace structures - titanium and aluminum

Structural Analysis

- Some key structural formulas that are handy to have for early (back-of-the-envelope) design analyses:
 - Spring & Beam Stiffnesses
 - Beam Natural Frequencies
 - Euler Buckling Loads
 - Stresses in Simple Pressurized Shell

 $\sigma_{hoop} = p R / t$; $\sigma_{long} = p R / 2 t$

- Random Vibe and Acoustic Equivalent g's

Structural Analysis

- Definition of Example Problem
- Definition of Load Cases
- Analysis of Stresses
- Tabulation of Margins of Safety
- Identification of Critical Load Case

Structural Example

- Storage canister for ISS solar array deployment system
- 200 lb tip mass
- Cantilever launch configuration
- Thin-wall aluminum shell structure

Loads Sources

- Launch
 - Accelerations
 - Pressurization
 - Acoustics
 - Random Vibration
 - Thermal
- Crash Landing
- On-Orbit

Structural Parameters

$$R = 25 \text{ in } \ell = 100 \text{ in } t = 0.10 \text{ in } \rho = 0.10 \frac{lbs}{in^3}$$

$$I = \frac{\pi}{4} \left(R_o^4 - R_i^4 \right) \cong \pi R^3 t = 4800 \text{ in}^4$$

$$P = 0.10 \frac{lbs}{in^3}$$

$$E = 1 \times 10^7 \text{ psi } \alpha = 13 \times 10^{-6} \frac{in}{in \cdot {}^\circ F}$$

$$W_{canister} = 2\pi\rho t R \ell = 157 \text{ lbs } W_{tip} = 200 \text{ lbs}$$

$$g = 386.4 \frac{in}{\sec^2} \qquad \sigma_{Ty} = 37 \text{ ksi } \sigma_{Tu} = 42 \text{ ksi}$$

$$A = 2\pi R t = 15.71 \text{ in}^2$$

Launch Accelerations

Pressurization Loads

Launch Vehicle Vibration Environment

Random Vibration Loads

$$\begin{split} RLF_n &= \sqrt{\frac{\pi f_n PSD}{4\xi}} & FOS = 3.0 \\ f_1 &= \frac{1.732}{2\pi} \sqrt{\frac{EIg}{W_{tip}\ell^3 + 0.236W_{canister}\ell^3}} = 80 \ Hz \\ \hline f_n & \frac{\xi}{150 \ Hz} & .045 \\ \hline 150 \ Hz & .045 \\ \hline 150 \ Hz & .005 \\ \hline 300 \ Hz & .005 \\ \end{split} \begin{array}{c} FOS &= 3.0 \\ FOS$$

Thermal Loads

100

Assume support structure shrinks only half as much as canister

$$\sigma_{Thermal} = E\varepsilon = 10^7 \cdot \frac{.5 \times .13}{100} = 6500 \ psi$$

Launch Loads Summary

Load Source	Limit	FOS	Design
	Stresses		Stress
Launch	1556	1.4	2178
Accelerations			
Pressurization	3675	3.0	11,025
Random	1150	3.0	3450
Vibration			
Thermal	6500	1.4	9100
Total			25,750 psi

$$MS = \frac{Allowable \ Load}{Design \ Load} - 1 = \frac{37,000}{25,750} - 1 = 43.7\%$$

Observations about Launch Loads

- Individual loads could be applied to same position on canister at same times conservative approach is to use superposition to define worst case
- 43% margin indicates that canister is substantially overbuilt - if launch loads turn out to be critical load case, redesign to lighten structure and reduce mass.

