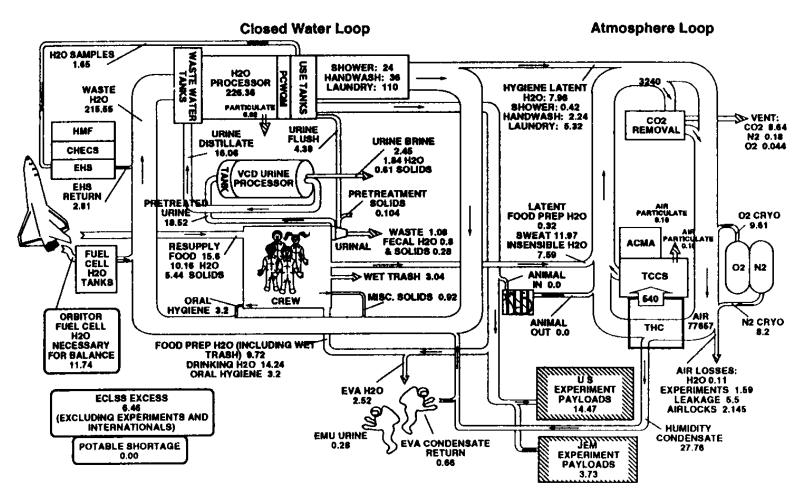
Space Life Support

- Overview
- Major Component Systems
- Open-loop Life Support
- Physico-Chemical
- Bioregenerative
- Extravehicular Activity

© 2002 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Essentials of Life Support

• Air


- Constituent control
 - CO_2 scrubbing
 - Humidity control
 - Particulate scrubbing
 - O_2 , N_2 makeup
- Temperature control
- Water
- Food
- Waste Management

ISS Life Support Schematic

UNIVERSITY OF

= Mess Lost

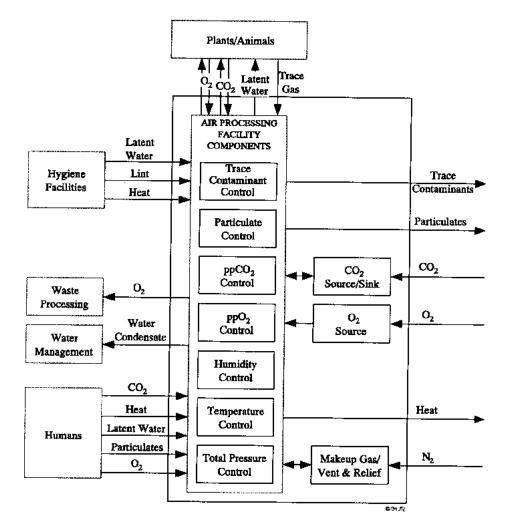
From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996

ISS Consumables Budget

Consumable	Design Load
	(kg/person-day)
Oxygen	0.85
Water (drinking)	1.6
Water (in food)	1.15
Water (clothes and dishes)	17.9
Water (sanitary)	7.3
Water (food prep)	0.75
Food solids	0.62

Effect of Regenerative Life Support

- Open loop life support 100% resupply
- + Waste water recycling 45%
- + CO_2 absorbent recycling 30%
- + O_2 regenerate from CO_2
- + Food from wastes 10%
- + Eliminate leakage 5%



20%

Air Revitalization Processes

UNIVERSITY OF

ARVIA

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996

Cabin Atmospheric Pressure

- Past choices driven by minimum mass
 - Mercury/Gemini: $100\% O_2 @ 3.5 psi$
 - Apollo: 100% O2 @ 5 psi
 - Skylab: 80% O₂/20% N₂ @ 5 psi
 - Shuttle/ISS: 21% $O_2/79\% N_2 @ 14.7 psi$
- Issues of compatibility for docking vehicles, denitrogenation for EVA
- Current practice driven by avionics, concern for research protocols

Oxygen Makeup Systems

- Gaseous O₂ storage (also N₂)
 - Typical pressures 200 atm (mass optimized) to 500-700 atm (volume optimized)
 - 2 kg tank/kg O_2
- Liquid O_2 storage (also N_2)
 - Requires 210 kJ/kg for vaporization (~2W/person)
 - Supercritical storage T=-118.8°C, P=49.7 atm
 - 0.3-0.7 kg tank/kg O_2
- Solid perchlorates ("candles")
 - LiClO₄ --> LiCl + 2O₂ +Q @ 700°C
 - 2.75 kg LiClO₄/kg O₂ (Typically 12.5 kg with packaging)

UNIVERSITY OF

Superoxides and Ozonides

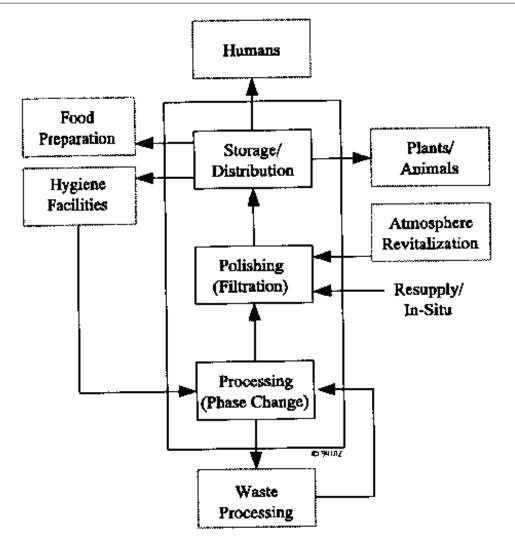
- O2 generation
 - KO₂ + 2H₂O --> 4KOH + 3O₂
 - KO₃ + 2H₂O --> 4KOH + 5O₂
- CO2 reduction
 - 4KOH + 2CO₂ --> 2K₂CO₃ + 2H₂O
 - 2K₂CO₃ + 2H₂O + 2CO₂ --> 4KHCO₃

CO₂ Scrubbing Systems

- CO₂ production ~1 kg/person-day
- Lithium hydroxide (LiOH) absorption
 - Change out canisters as they reach saturation
 - 2.1 kg/kg CO2 absorbed
 - Also works with $Ca(OH)_2$, Li_2O , KO_2 , KO_3
- Molecular sieves (e.g., zeolites)
 - Porous on the molecular level
 - Voids sized to pass O_2 , N_2 ; trap CO_2 , H_2O
 - Heat to 350°-400°C to regenerate
 - 30 kg/kg-day of CO_2 removal; 200W

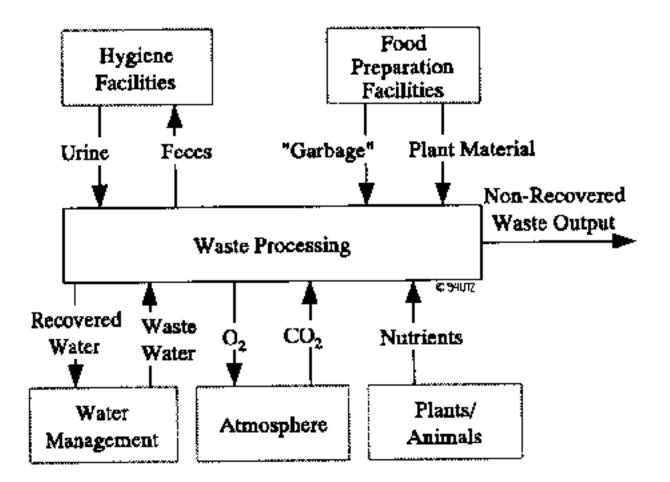
CO_2 Reduction

- Sabatier reaction
 - $CO_2 + 4H_2 --> CH_4 + 2H_2O$
 - Lowest temperature (250°-300°C) with Ni catalyst
 - Electrolyze H_2O to get H_2 , find use for CH_4
- Bosch reaction
 - CO₂ + 2H₂ --> C + 2H₂O
 - 1030°C with Fe catalyst
 - C residue hard to deal with (contaminates catalyst)
- Other reactions possible as well...

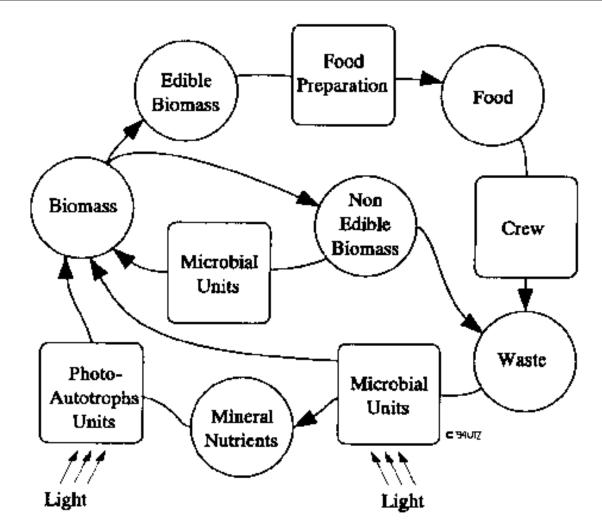


Nitrogen Makeup

- Nitrogen lost to airlock purges, leakage (can be >1%/day)
- Need to replenish N₂ to maintain total atmospheric pressure
- Choices:
 - High pressure (4500 psi) N_2 gas bottles
 - Cryogenic liquid nitrogen
 - Storable nitrogen-bearing compounds (NH₃, N_2O , N_2H_4)

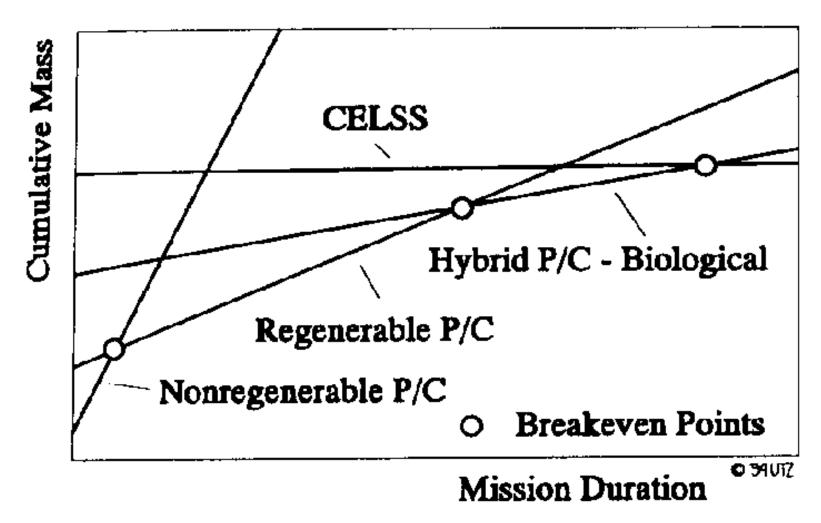

Water Revitalization Processes

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996 UNIVERSITY OF MARYLAND


Waste Management Processes

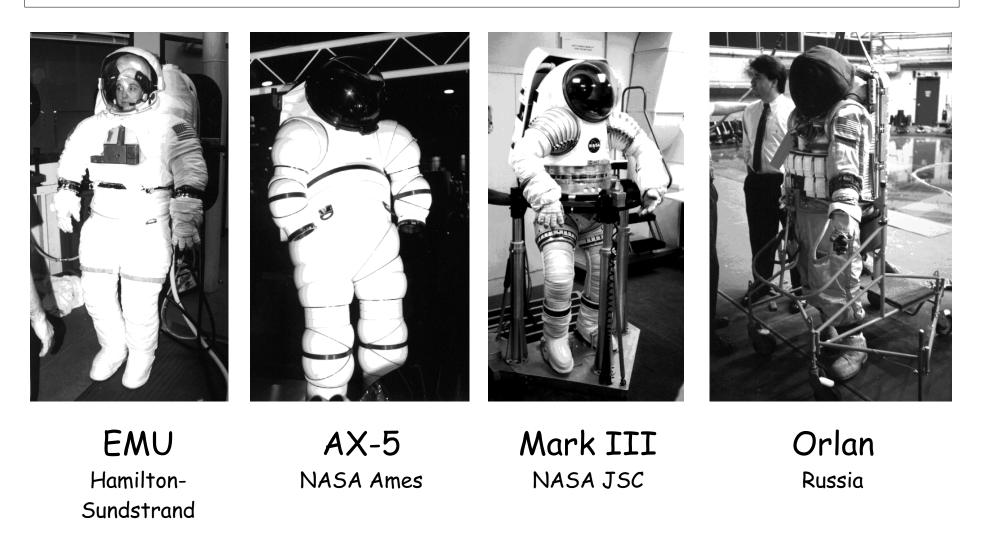
UNIVERSITY OF

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996


Bioregenerative Life Support Schematic

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996

UNIVERSITY OF


Life Support Systems Analysis (example)

From Peter Eckart, Spaceflight Life Support and Biospherics, Kluwer Academic, 1996

UNIVERSITY OF

Existing Pressure Suits

Liquid Cooling Garment Designs

U.S. (ILC-Dover)

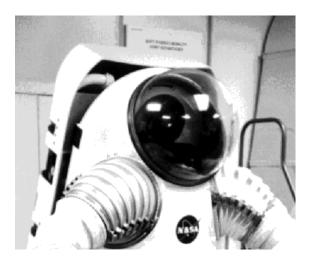
Russian

Space Life Support Principles of Space Systems Design

MARYLAND

Pressure Suit Entry Systems

Waist Entry


Rear Entry

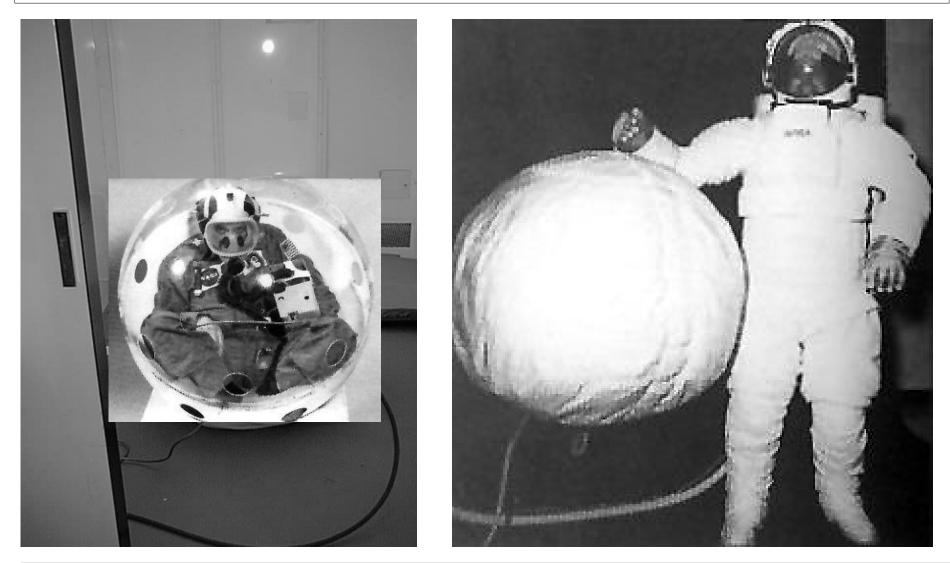
Pressure Suit Helmet Designs

Spherical Bubble with External Visor

Fixed Helmet with Faceplate Hemispherical Bubble Helmet

Launch and Entry Suits

Shuttle Launch and Entry Suit (David Clark Co.)



UNIVERSITY OF MARYLAND

Russian Sokol Launch and Entry Suit

Personal Rescue Sphere

