Drag on a hemisphere

\[dA = r^2 \sin \theta \, d\theta \, d\phi \]
\[\alpha = \theta + \frac{\pi}{2} \]

Force on \(dA = \rho \, V^2 \, \sin^2 \alpha \, dA \)

\[= \rho \, V^2 \, \sin^2 \left(\theta + \frac{\pi}{2} \right) \frac{r^2 \sin \theta}{\cos^2 \theta} \, d\theta \, d\phi \]
\[= \rho \, V^2 \, r^2 \cos^2 \theta \sin \theta \, d\theta \, d\phi \]

Drag on \(dA = \) (Force on \(dA \)) \(\sin \alpha = \) (Force on \(dA \)) \(\cos \theta \)

\[\text{Drag} = \rho \, V^2 \, r^2 \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \cos^2 \theta \sin \theta \, d\theta \, d\phi \]
\[= 2\pi \rho \, V^2 \, r^2 \int_0^{\frac{\pi}{2}} \cos^2 \theta \sin \theta \, d\theta \]
\[= 2\pi \rho \, V^2 \, r^2 \left[\frac{\cos^4 \theta}{4} \right]_0^{\frac{\pi}{2}} \]
\[= 2\pi \rho \, V^2 \, r^2 \left(\frac{1}{8} \right) \]
\[D = 2\pi \rho \, V^2 \, r^2 \left(\frac{1}{8} \right) \]
\[= \frac{1}{2} \pi \rho \, V^2 \, \frac{r^2}{A} \]
\[= \frac{1}{2} \rho \, V^2 \, A \, C_D \quad \Rightarrow \quad C_D = 1 \]

Can solve this again for lift, but symmetry gives \(C_L = 0 \)
Newtonian Flow explains behavior of an ideal shock wave; past entry vehicles on Earth!

normal (detached shocks) - how do we model that?

Newtonian Flow: \(C_p = 2 \sin^2 \alpha \)

Modified Newtonian Flow: \(C_p = C_{pmax} \sin^2 \alpha \)

\[
C_{pmax} = \text{pressure coefficient behind normal shock}
\]

\[
C_{pmax} = \frac{2}{\gamma m^2} \left\{ \left[\frac{(\gamma+1) m^2}{\gamma \delta m^2 - 2(\delta-1)} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{1 - \delta + 2 \delta M^2}{\delta+1} \right] - 1 \right\}
\]

We can rewrite this as

\[
C_{pmax} = \left[\frac{(\gamma+1)}{4\gamma - 2(\delta-1)} \right]^{\frac{\gamma}{\gamma-1}} \left[\frac{2(1-\delta)}{\delta(\delta+1)m^2} + \frac{4}{\delta+1} \right]^{\frac{1}{\gamma}} - 1 \times \frac{2}{\gamma m^2}
\]

Now let \(M \to \infty \)

\[
C_{pmax} \lim_{M \to \infty} = \left[\frac{(\delta+1)^2}{4\gamma} \right]^{\frac{\gamma}{\gamma-1}} \left(\frac{4}{\delta+1} \right)
\]

\[
= 1.839 \text{ for } \delta = 1.4
\]

\[
= 2.0 \text{ for } \delta = 1.0
\]
FIGURE 3.8
Surface pressure distribution over a paraboloid at $M_{\infty} = 8.0$; p_0 is the total pressure behind a normal shock wave at $M_{\infty} = 8.0$.