University of Maryland
Concepts and Technologies
for Robotic Servicing of
Hubble Space Telescope

David Akin, Brian Roberts,
Walt Smith, and Brook Sullivan
Space Systems Laboratory
University of Maryland,
College Park
Presentation Overview

• Space Systems Laboratory background

• Relevant SSL technologies

• Ranger: system and experiences

• Recent HST studies

• Mission concepts

• Conclusions
ARMIS Telerobotics Study

Survey of five NASA “Great Observatories” to assess impacts and benefits of telerobotic servicing - major results:

• Ground-controlled telerobotics is a pivotal technology for future space operations

• Robotic system should be designed to perform EVA-equivalent tasks using EVA interfaces
 - Maximum market penetration for robot
 - Maximum operational reliability
 - Designing to EVA standards well understood

• Fully capable robotic system needs to be able to do rendezvous and proximity operations, grapple, dexterous manipulation
Fundamental Concept of Robotic Servicing

Human Workload Issues?

Control Station Design?

Manipulator Design?

Ground Control?

Flexible Connections to Work Site?

Multi-arm Control and Operations?

Interaction with Non-robot Compatible Interfaces?

Utility of Interchangeable End Effectors?

Ground-based Simulation Technologies?

Capabilities and Limitations?

Hazard Detection and Avoidance?

Development, Production, and Operating Costs?

Effects and Mitigation of Time Delays?
SSL Relevant Experience Timeline (1)

SSL studies applications of automation, robotics, and machine intelligence for servicing Hubble and other Great Observatories for NASA MSFC

SSL develops ParaShield flight test vehicle for suborbital mission

Initial operational tests of Beam Assembly Teleoperator

Experimental Assembly of Structures in EVA flies on STS 61-B

BAT used for extensive servicing tests on HST training mockup

Space Systems Laboratory
University of Maryland
Ranger Telerobotic Flight Experiment
SSL Relevant Experience Timeline (2)

'90 '91 '92 '93 '94 '95 '96 '97 '98 '99

SSL designs Ranger based on experience with HST servicing

UMd NBRF opens

Ranger performs end-to-end HST servicing simulations

Phase 0 PSRP

RTSX PDR RTSX CDR

Phase 1 PSRP

Phase 2 PSRP

Environmental testing at JSC

NASA selects Ranger TFX as low-cost robotic flight experiment

Ranger NBV operational

SSL directed to redesign Ranger for shuttle mission: Ranger TSX

Environmental testing at JSC
Ranger Neutral Buoyancy Vehicle I
Ranger Telerobotic Shuttle Experiment
SSL Relevant Experience Timeline (3)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Development of ECU operations timeline</td>
</tr>
<tr>
<td>2001</td>
<td>PXL in NB testing</td>
</tr>
<tr>
<td>2002</td>
<td>Dual-arm system in active test</td>
</tr>
<tr>
<td>2003</td>
<td>Ranger TSX program cancelled</td>
</tr>
<tr>
<td>2004</td>
<td>Modular miniature servicer development for DARPA</td>
</tr>
</tbody>
</table>

- PXL in NB testing
- All-up mockup for public outreach
- Modular miniature servicer development for DARPA
Robotic HST Servicing - Batteries

BAT (1987)

RANGER (2003)
Robotic HST Servicing - Instruments

- ECU
- WFPC
- FGS
Ranger Flight Dexterous Arms
Dexterous Arm Cross-Section

- Wrist Yaw Axis
- Hand Roll Axis
 - Slow Tool Axis
 - Fast Tool Axis
- Wrist Pitch Axis
- Force/Torque Sensor
- Elbow Roll Axis
- Elbow Pitch Axis
- Shoulder Roll Axis
- Shoulder Pitch Axis
- Wrist Camera
- Wrist Roll Axis
Dexterous Arm Parameters

• Modular arm with co-located electronics
 – Embedded 386EX rad-tolerant processors
 – Only power and 1553 data passed along arm
• 53 inch reach mounting plate-tool interface plate
• 8 DOF with two additional tool drives (10 actuators)
• Interchangeable end effectors with secure tool exchange
• 30 pounds tip force, full extension
• 150 pounds (could be significantly reduced)
• 250 W (average 1G ops)
Interchangeable End Effector Mech.

- 3 Mechanical Interfaces
 - Hand Roll Drive
 - Fast Tool Drive
 - Slow Tool Drive
- No power or data interface

Each IEEM is approximately 2.75” Ø by 2”. Weight is 2 lbs.
Tool Drives

• Tool Drive Motor Controllers are primary method for commanding / sensing EE gripping force or output torque

• Tool Drive Motor Specifications
 – Hand Roll Drive (High Torque, Low Speed)
 – Slow Tool Drive (High Torque, Low Speed)
 – 52 ft-lbs, 139 °/s no load
 – Fast Tool Drive (Low Torque, High Speed)
 – 1 ft-lb, 15,675 °/s no load
 – **Must** add gearing to use
RTSX End Effectors

Bare Bolt Drive Right Angle Drive Microconical End Effector

Tether Loop Gripper EVA Handrail Gripper SPAR Gripper
Design: PXL Assembly

- **Electronics' Housing**
- **Pitch Joints**
- **Roll Joints**
- **EVA Interface**

Dimensions:
- Ø 9.5”
- ~19”
- ~75”
PXL in Stowed Configuration
PXL Underwater Operations
Ranger Control Station
Ground Control Station

Video Rack

Operator Console #1

Operator Console #2
Commanded and Predictive Displays

Time Delay and Display Method Effects

- The commanded display severely reduced the performance degradation with 0.01 statistical significance.
- The commanded display reduced time delay effects on completion time up to 91% at 1.5-second delay
 - Subjects controlled the manipulator more accurately with the commanded display
 - Impacts were detected and compensated faster.
- The predictive display also had better performance than time delay alone, at 0.01 statistical significance.
- The minor calibration errors caused the predictive displays to be about half as effective as the commanded display, a 0.01 statistical significant difference.
Impact Comparison

Commanded Display’s Reduction of Impacts

- Time delay and predictive display usage had no statistical significant effects on number of impacts
- Use of the commanded display dramatically reduced errors, at 0.01 significant level, even when compared to no time delay
- Only 3 errors were made with a commanded display over 4 hours of testing including 4 subjects testing a total of 1440 trials.
- 20 times more errors were made without a commanded display
- This reduction was due to subjects carefully positioning the commanded display to avoid an impact
Ranger’s Place in Space Robotics

How the Operator Interacts with the Robot

<table>
<thead>
<tr>
<th>How the Robot Interacts with the Worksite</th>
<th>Locally Teleoperated</th>
<th>Remote (Ground) Teleoperated</th>
<th>Supervisory/ Autonomous Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Robotic Interfaces</td>
<td>SRMS/SSRMS MFD/SPDM AERCam.</td>
<td></td>
<td>ETS-VII ROTEX Sojourner</td>
</tr>
<tr>
<td>Any EVA-Compatible Interface</td>
<td></td>
<td></td>
<td>Ranger TSX</td>
</tr>
<tr>
<td>Any Human-Compatible Interface</td>
<td>Robonaut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Missions Enabled by Space Robotics

How the Operator Interacts with the Robot

<table>
<thead>
<tr>
<th>How the Robot Interacts with the Worksite</th>
<th>Locally Teleoperated</th>
<th>Remote (Ground) Teleoperated</th>
<th>Supervisory/Autonomous Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Robotic Interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Payload Positioning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ISS Planned Robotic Servicing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Free-flying Cameras</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any EVA-Compatible Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• All ISS Servicing</td>
<td></td>
<td>• Lunar Long-Distance Surveying</td>
<td>• Planetary Rovers</td>
</tr>
<tr>
<td>• NGST Ass’y/Servicing</td>
<td></td>
<td>• Future ISS Servicing</td>
<td>• Deep Space Visual Inspection</td>
</tr>
<tr>
<td>• Aerobrake Ass’y</td>
<td></td>
<td>• Lunar Nearside Infrastructure</td>
<td>• Mars Base Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Grand Observatories”</td>
<td>• Mars ISRU Servicing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ass’y/Servicing</td>
<td>• Mars Geology/Life Sciences</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mars EVA Robotic Assistant</td>
<td></td>
</tr>
<tr>
<td>Any Human-Compatible Interface</td>
<td></td>
<td>• Lunar/HEO Contingency</td>
<td>• Deep Space Contingency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repairs</td>
<td>Repairs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dexterous Science Teleops</td>
<td>• Dexterous Science Ops</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LEO Contingency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repairs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Telepresence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Feasibility Study Currently Underway for NASA Goddard
Ranger Application to HST SM1

Time (hrs)

0:00 3:00 6:00 9:00 12:00 15:00 18:00

EVA Daily Average from SM1

EVA Day 1 EVA Day 2 EVA Day 3 EVA Day 4 EVA Day 5

Ranger (pre-EVA) EV1 - with Ranger Ranger (during EVA) EV2 - with Ranger Ranger (post-EVA)
Grasp Analysis of SM-3B

Numbers refer to instances of grasp type over five EVAs.
Total discrete end effector types required ~8-10
Results of Robot Dexterity Analysis

• Broke 63 crew-hrs of EVA activity on SM-3B into 1860 task primitives
• 13.4% not yet categorized
• Of categorized task primitives, 95.3% are viable candidates for 2DOF robotic end effectors
 – 71.8% 1DOF tasks
 – 3.2% 2DOF tasks
 – 20.2% tasks performed differently by robot than EVA (e.g., torque settings)
• 4.7% require additional dexterity
• All SM-3B robotic tasks can be performed by suite of 8-10 different end effectors
Baseline SM4 Task Allocations

- RSUs (3) 3:00
- Battery Modules (2) 2:50
- COS 3:10
- WFC3 2:55
- ASCS/CPL 3:30
- FGS3 3:35
- NOBLs (3) 1:50
- ASCS/STIK 1:55
- DSC 1:00
- Setup & Closeout 5:00
HERCULES (Dual Arm; EVA Operations)
HERCULES Proof-of-Concept Testing
SM4R(obotic) Concept Overview

Ranger Telerobotic Servicing System
University of Maryland

Interim Control Module
Naval Research Laboratory

HST SM4 Servicing Hardware
NASA Goddard
Maneuvering Spacecraft Bus - ICM

- Developed by Naval Research Laboratory for NASA ISS
- Sufficient payload on EELV for Ranger robotics, SM-4 servicing hardware, HST flight support hardware
- Sufficient maneuvering capability for extensive coorbital operations, followed by HST deorbit or boost to disposal altitude
- Currently in bonded storage at NRL
Dexterous Robotics - Ranger

- Developed by University of Maryland for NASA as low-cost flight demonstration of dexterous telerobotics
- Designed to be capable of using EVA interfaces and performing EVA tasks
- System passed through NASA Phase 0/1/2 PSRP safety reviews for shuttle flight
- High-fidelity qualification arms in extended tests at UMd SSL
- 70% of flight dexterous manipulator components in bonded storage at UMd
Servicing Option 1

- Limited to critical servicing options
 - Batteries
 - Rate sensor units
 - Battery carrier plates, SOPE, COPE

- HST payload mass 3194 lbs
- Total ICM payload 4454 lbs
- Servicer empty mass 11,065 lb
Servicing Option 2

- Limited to critical servicing options
 - Batteries
 - Rate sensor units
 - Battery carrier plates, SOPE, COPE

- HST payload mass: 3194 lbs
- Total ICM payload: 4454 lbs
- Servicer empty mass: 11,065 lb
Servicing Option 3

- All SM4 ORUs and launch protective enclosures
- HST payload mass 9574 lbs
- Total ICM payload 10,834 lbs
- Servicer empty mass 17,445 lb
Modifications to Existing Hardware

- **ICM**
 - Addition of TDRSS Ku-band command data links
 - Mounting interfaces for robotic hardware, HST servicing hardware, MMS berthing ring
 - Attachment to EELV payload adapter

- **Ranger**
 - Addition of longer strut elements to provide needed reach for positioning leg
 - Completion of flight manipulator units
 - Development of required end effectors for servicing tasks
 - Implementation of launch restraints for robot on ICM deck
 - Development of control station for teleoperated/supervisory control

- **HST servicing hardware**
 - Modification of shuttle launch restraints to ICM deck
 - Verification of thermal environment for ORUs
SM4R Mission Scenario

- Launch on EELV, rendezvous and dock to HST at aft bulkhead MMS fittings (high level supervisory control)
- Perform high-priority servicing (batteries/gyros), other targets of opportunity (e.g., SM4 instrument changeouts), boost HST to multi-decade stable altitude
- Separate ICM and move into coorbital location to allow HST to perform nominal science data collection (no impact to HST pointing or stability) - ICM can be used as robotics testbed during this time
- ICM can redock and service multiple times if needed (e.g., periodic gyro replacements)
- ICM is based on design with proven flight duration of 6 years on-station
- At end of HST science mission, ICM redocks and performs deorbit/disposal boost mission
Launch Vehicle Considerations

• Due to size of ICM and servicing hardware, an EELV with a 5-meter payload fairing is required
 – Delta IV Medium+ (5,2)
 – Atlas V 501

• Also considered next larger size EELV for heavier mission cases
 – Delta IV Medium+ (5,4)
 – Atlas V 521
ICM Propellant Loads

<table>
<thead>
<tr>
<th></th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta IV M+(5,2)</td>
<td>11,700</td>
<td>11,040</td>
<td>7,515</td>
</tr>
<tr>
<td>Atlas V 501</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta IV M+(5,4)</td>
<td>11,700</td>
<td>11,700</td>
<td>11,700</td>
</tr>
<tr>
<td>Atlas V 521</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propellant Mass in lbs
Assumptions:

- 300 m/sec deltaV reserve for rendezvous and docking
- Remaining propellant used to raise orbit from 330 NMi to new circular altitude, then deorbit from that altitude
Mission Assurance

• Use existing hardware to initiate comprehensive testing program
 – Hubble SM4 EVA neutral buoyancy training hardware
 – Ranger neutral buoyancy robot
 – UMd Neutral Buoyancy Research Facility

• Three keys to success:
 – Test
 – Test
 – Test

• Evaluate every SM4 task in first 6-9 months and decide on whether or not to perform it on-orbit

• Aim for 25-30 hours of end-to-end simulation for every hour of on-orbit operations
Why SM4R?

- No other options come close to matching technology readiness:
 - ICM based on “black” spacecraft with flight heritage, currently ready to fly
 - Ranger manipulators developed and tested; 70% of dexterous manipulator flight components already procured

- No other options come close to matching the proven capabilities
 - Long on-orbit endurance and high maneuvering capacity provide assurance of successful deorbit at Hubble end-of-life
 - Ranger manipulators designed for EVA-equivalent servicing, building on 20-year heritage of HST robotic servicing operations

- No other options come close to matching the flexibility
 - Interchangeable end effectors provide unlimited interfaces
 - Ranger arm design parameters (force, speed, clean kinematics) unrivaled among flight-qualified manipulators
Results of a Successful SM4R Mission

- Demonstration of Dexterous Robotic Capabilities
- Understanding of Human Factors of Complex Telerobot Control
- Pathfinder for Flight Testing of Advanced Robotics
- Precursor for Low-Cost Free-Flying Servicing Vehicles
- Lead-in to Cooperative EVA/Robotic Work Sites
- Dexterous Robotics for Advanced Space Science
For More Information

http://www.ssl.umd.edu
http://robotics.ssl.umd.edu