Structural Design

• Loads and Load Sources
 - Designing or Critical Loads
 - Load Information / Estimation

• Piece Parts Analysis
 - Margin of Safety Definition
 - Factors of Safety to use
 - Summary Table

• Important Structural Concepts
 - Primary/Secondary Structure
 - Failsafe & Fracture Critical Structure
 - Aerospace Materials
 - Structural Failure
Loads

• "Designing Load" is the load that determines one or more structural characteristic of the part:
 - shape, thickness, strength, stiffness, material...

• Critical Load (somewhat synonymous) is more exactly the load that gives the minimum margin of safety (MS) for a part
 - MS represents the amount of extra structural capability you have over the applied load (elbow room)

• Examples of Critical Loads
 - pressurization loads for a rocket casing
 - launch loads for a spacecraft
 - thermal loads for a propulsion subsystem
 - crash loads for a car
Load Sources

• Where do these loads come from?
• For every part (subsystem) in your design, you should review every phase of its life and identify all loads that have the potential to be critical:
 - manufacturing & assembly
 - test (qualification, proof test)
 - transportation (truck or launch)
 - operation
 - contingencies (crash landing)
• Obtain or estimate loads
 - look up loads in reference books
 - ask other groups to determine loads
 - guestimate for the purposes of starting analysis
• Calculate all margins of safety
Launch Vehicle Loads

- **Max Q - Aerodynamic Loads**
 - $Q = \frac{\rho V^2}{2}$
 - maximum pressure and bending on vehicle

- **Max g's**
 - usually occurs at stage burnout
 - maximum axial load on vehicle and payload

- **Abrupt environmental & vehicle changes**
 - internal and external pressure drop
 - dramatic thermal changes

- **Staging shock loads**
 - high g's, high frequency

- **Random vibration and acoustics**
 - equiv. g's = $\sqrt{\pi \text{ PSD } f_n Q / 2}$

- Some of these loads apply to payload as well
Launch Vehicle Failures

- LV failures are tied to the following subsystems
 - Propulsion (70%)
 - Avionics (11%)
 - Separation (8%)
 - Electrical (7%)
 - Structural (2%)

- Structural Failure Relatively Rare
 - AmRoc, Shuttle, Pegasus

- Propulsion or Control System Failure More Common
 - Conestoga, LLV, Ariane V
Spacecraft On-Orbit Loads

- **Accelerations**
 - orbital accelerations
 - gravity gradient
 - spinning
 - on-board disturbances
 - thrusting (attitude control, reboost)

- **Thermal Loads**
 - sun / shadow thermal gradients
 - eclipse effects (thermal snap)

- **Other Special Cases**
 - EVA loads (corners & edges)
 - rendezvous & docking

- Generally spacecraft are designed by launch loads!
Planetary Vehicle Loads

- Vibration loads from traversing rough terrain
- Launch / landing loads
- Maneuvering loads
 - tight turn
 - driving on an incline
 - loosing traction / support on one wheel
- Crash loads
 - driving into a big boulder
 - rolling vehicle in unstable soil
 - safety is primary consideration
Piece Parts Analysis

• Structural analysis of a system consists of at least the following three tasks
 - Load Cycle Modeling (system-level) - iterative process
 - Piece-Part Analysis (static) - minimum margins of safety
 - Fracture and Fatigue Analysis (dynamic) - safe life analysis

• Piece Parts Analysis
 - Identify all loads on each part / subsystem
 - Calculate margins of safety
 - Tabulate minimum margins of safety

• Example: OTD Boom Piece Parts Analysis
Factors & Margins of Safety

- Limit Loads: maximum loads expected (applied loads)
- Yield Load and Ultimate Load
- **Factors of Safety**: numbers imposed by the Customer (or your own good sense) that reflect
 - how uncertain you are of the load or structure
 - how safe you want to be
 - examples: 10 for bridges, 5 for ground handling equip, 2 for a/c
- **Margins of Safety** are calculated as follows:

\[
MS = \frac{\text{Allowable Load}}{\text{Applied Load} \times FS} - 1.0
\]

- **Beware**: There are other definitions of these terms in engineering, but the above approach is the most common in Aerospace
Primary Structure

- Primary, Secondary, & Tertiary Structure
 - Primary structure is the system's backbone (carries all of the major loads imposed on vehicle)
 - Secondary structure includes all essential appendages and support structures (such as solar arrays, antennas, & fuel tanks)
 - Tertiary structures are less-essential mounting hardware (brackets, component housings, connector panels)

- Example of primary structure
 - Thin-walled cylindrical launch vehicle
 - Challenge is to figure out how to react shear & torsion stresses
 - Buckling of skin is most common failure mode
 - Buckling of a cylindrical section:
 \[
 \sigma_{\text{crit}} = \frac{E \, t}{R \, \sqrt{3(1-\nu^2)}}
 \]
Critical Structure

- Critical Items List (CIL) contains all parts that
 - are deemed criticality 1 by FMEA (ie, single point failures)
 - are fracture critical (ie, stressed to the point where a flaw will grow to critical size)

- Failsafe & Fracture Critical Structure
 - Catastrophic failure is generally defined by customer
 - Failsafe structure can take redistributed loads after failure (ie, not single point failures); shall release no hazardous mass; shall not change dynamics significantly; shall have no fatigue problems
 - Low-risk structure is not primary structure; has only a remote possibility of failure; will not propagate a crack in 4 lifetimes
 \[\sigma_{\text{max}} < F_{tu} / [4 (1-0.5 R) K_t] \]
 - Fracture critical parts must be labeled and analyzed as such, then inspected, treated, and tracked more carefully than conventional parts

- Crack Growth Analysis (FLAGRO)
 - All FC parts must be shown good for four lifetimes of load cycles with an initial flaw (determined by NDI)
Aerospace Materials

- Comparison of specific stiffness, specific strength, and buckling parameter for a variety of aerospace metals and composites

- Definition of Structural Failure
 - Detrimental Yield vs Textbook Yield
 - deformation that detrimentally affects functionality of system
 - 0.2% Tresca yield condition (assumes system linear in first place)
 - Ultimate Failure
 - any material rupture or loss of functionality
Material Strength & Stiffness

- Typical Yield & Ultimate Strengths
 - aluminum yld: 37 ksi ult: 42 ksi
 - low strength steel yld: 36 ksi ult: 58 ksi
 - high strength steel yld:102 ksi ult:116 ksi
 - titanium yld:134 ksi ult:145 ksi

- Stiffness versus Strength Designs
 - aluminum w: 0.10 E/w: 100 σ_u/w: 420
 - Low σ_u steel w: 0.28 E/w: 102 σ_u/w: 204
 - high σ_u steel w: 0.29 E/w: 98 σ_u/w: 390
 - titanium w: 0.16 E/w: 109 σ_u/w: 906

Conclusion: for aerospace structures - titanium and aluminum
Structural Analysis

- Some key structural formulas that are handy to have for early (back-of-the-envelope) design analyses:
 - Spring & Beam Stiffnesses
 - Beam Natural Frequencies
 - Euler Buckling Loads
 - Stresses in Simple Pressurized Shell
 \[\sigma_{\text{hoop}} = \frac{p R}{t}; \quad \sigma_{\text{long}} = \frac{p R}{2 t} \]
 - Random Vibe and Acoustic Equivalent g's