

Systems Analysis

- Lecture #03 September 3, 2024
- Rigorous decision making
- Structure of systems analysis
- Objective functions
- Trade studies
- Modeling
- Parametric design
- Decision matrices
- Analytical Hierarchy Process

1

© 2024 University of Maryland - All rights reserved <http://spacecraft.ssl.umd.edu>

Analytical Design

• Rigorously investigating options to arrive at the most appropriate choices – Modeling – Parametric analysis – Trade studies – Sensitivity analysis

• Ties into fields of decision analysis, optimization, probability

Design Reference Mission(s)

• Description of canonical mission(s) for use in design processes • Could take the form of a narrative, storyboard, pictogram,

timeline, or combination thereof • Greater degree of detail where needed (e.g., surface operations) early in development cycle

3

• Created by eventual users of the system ("stakeholders") very

Requirements Document

• Lists (clearly, unambiguously, numerically) what is required to successfully complete the program which culminates in the

- The "bible" of the design and development process Design Reference Mission
- of detail
- May be subject to change as state of knowledge grows
- Critical tool for maintaining program budgets

• Requirements "flow-down" results in successively finer levels

Design is based on requirements. There's no justification for designing something one bit "better" than the requirements dictate.

Akin's Laws of Spacecraft Design - #13

Space Systems Architecture

• Description of physical hardware, processes, and operations to

• Term is used widely (e.g., "software architecture", "mission architecture", "planning architecture"), but refers to basic

- perform DRM
	- configuration decisions

• Generally result of significant trade studies to compare options

Making Good Decisions

• Define "good": does it best perform the mission? • Define "mission": what does it have to do? • Define "best": what is the critical figure of merit? • Define "figure of merit": how do we measure how well it meets the requirements? • Define "requirements": what does it need to be able to do? • Define "able": how does it mean to "meet" a requirement? • Define "meet": are there extra points for exceeding?

Buying a New Car

- Possible figures of merit – Initial purchase price – Life cycle cost – Reliability – Payload – Environmental impacts – Safety – Maintainability/reliability
	- U N I V E R S I T Y O F MARYLAND

• Design Reference Mission: drive 12,000 miles/year for 15 years

Buying a New Car

9

Honda Fit

• Can it accomplish the DRM? • Does it meet the requirements? (Oops, we didn't do a requirements document… *yet!*) • Is it the best solution to the problem that requires a new car?

Buying a New Car

10

UNIVERSITY OF MARYLAND best fit to the requirements – this is a *trade study*

Honda Fit Chevy Bolt Toyota RAV4 • You can't make an informed choice if you only have one option • You must compete at least two options, and select the better/

Course Syllabus/Team Projects ENAE 483/788D – Principles of Space Systems Design

Overview of the Design Process

System-level Design (based on disciplineoriented analysis)

Vehicle-level Estimation (based on a few parameters from prior art)

> **System-level Estimation (system parameters based on prior experience)**

Program Objectives System Requirements

Increasing complexity

Increasing accuracy

Decreasing ability to comprehend the "big picture"

Basic Axiom: Relative rankings between competing systems will remain consistent from level to level

• Requirements are "pass/fail" – either you meet them or you

Decision Criteria

• Each design process will have an "Objective Function" – a particular figure of merit which is optimized in the trade study

- don't
	- process
	- cost

• Examples: minimize inert mass, maximize payload, minimize

What's the Right Objective Function?

Was the DRM Correct and Appropriate? • 1st iteration: 12,000 mi/yr (U.S. average)

-
- 2nd iteration:
- -35 mi/day x 250 working days $= 8750$ mi/yr – 300 mi/month chasing balloons = 3600 mi/yr – 2000 mi/yr in road trip – Total mileage 14,350 mi/yr • Requirements include

– Balloon launches include carrying 4 helium tanks ⇒ need 5ft of cargo

Car Decision, Revisited

• Bolt doesn't have the range for balloon launches or road trips

- Fit doesn't have the cargo space for balloon launches $\bullet \implies$ Choice defaults to RAV4 as only option that meets
	- requirements
- Next revisit: mixed fleet solution – RAV4 for long range trips and cargo – Bolt or Fit for routine local transportation

– Assumes purchase or life cycle cost is *not* the objective function!

Summary of the Trade Study Process

• Always develop at least two options to satisfy requirements • Compare options on the basis of an objective function to find • Revisit components (DRM, requirements, objective function)

- which is maximally beneficial to the decision criteria periodically to ensure the solution made is still the most favorable
	- subsystems, systems, vehicles, architectures…)

16

• This works on every level of the design process (components,

Trade Study – Comparison of Life Support Options

ENAE 483/788D – Principles of Space Systems Design

Trade Study – Variation of LV Design Parameters

Modeling for Design Parameters

19

Systems Analysis $\pi r^2 P = 2\pi r t \theta$ $rP = 2t\theta$ $t =$ *rP* 2*σ* $V_{tank} = 4\pi r^2$ *t* $m_{tank} = V_{tank} \rho_t = 4\rho_t$ $\pi r^2 \frac{rP}{2}$ 2*σ* $= 2\rho_t$ πr^2 ^{*rP*} *σ* $m_{gas} = V_{gas} \rho_g =$ 4 3 *πr*³ *ρg πr*³ *P*/*σ* 4/3*ρgπr*³ \Rightarrow 3 *ρt P* 2 ρ_g *σ* However…

mgas

 $P = \rho_g RT \Rightarrow$ m_{tank} *mgas* $\frac{1}{n}$ 3 2 *ρt ρg*

Modeling for Design Parameters

20

ρg ρg,*ref* = *P Pref* \Rightarrow $\rho_g = P$ *ρg*,*ref Pref*

P σ = 3 2 ρ *t P Pref ρg*,*ref P σ* $\frac{1}{3}$ 3 2 *ρt ρg*,*ref Pref σ*

For a spherical tank, the ratio between optimized tank mass and pressurized gas mass is invariant with tank pressure

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Decision Analysis Tools

- A number of different approaches exist, e.g. – Decision Matrices (such as Pugh Method) – Quality Function Deployment
	- Six Sigma

clear analytical metric exists - "quantifying opinions"

- Analytic Hierarchy Process (details following)
- Generally provide a way to make decisions where no single • Allows use of subjective rankings between criteria to create numerical weightings
- **Not** a substitute for rigorous analysis!

Pugh Matrix

Decision Matrix Using Real Numbers

Decision Matrix Using Normalized Numbers

Conclusion on Decision Matrices

• Use of the Pugh method (arbitrarily assigning numbers with implicit weighting of subjective evaluations) may produce a "reasonable" answer, but is *NOT* meaningful analysis and

• Use of quantitative values in a decision matrix *CAN* be used to

should *NOT* be presented or used as such evaluate given multiple different decision criteria • Quantitative data and weights should be normalized to prevent inadvertent weighting bias across criteria

• There will be times when you have to take human opinions

Dealing with Opinions

- into account
- Assessment of human factors or operational protocols – Impact of prior experience among potential options

• One valuable approach: the Analytical Hierarchy Process

26

• The goal is to collect and use the data in a rigorous manner • The need is to quantify the strength of the opinions spread

Systems Analysis ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND **Analytical Hierarchy Process (AHP)** • Considering a range of options, e.g., ice cream – Vanilla (V) – Peach (P) – Strawberry (S) – Chocolate (C) • Could ask for a rank ordering, e.g. (1) vanilla, (2) strawberry, (3) peach, (4) chocolate - but that doesn't give any information on how firm the rankings are • Use pairwise comparisons to get quantitative evaluation of the degree of preference 27

Pairwise Comparisons

- Ideally, do exhaustive combinations
	- Vanilla >> chocolate (strongly agree)
	- Vanilla >> peach (agree)
	- Vanilla >> strawberry (agree)
	- Peach >> chocolate (strongly agree)
	- Peach >> strawberry (disagree)
	- Strawberry >> chocolate (strongly agree)
- e.g., N=20 requires 190 pairings!
- U N I V E R S I T Y O F MARYLAND

Systems Analysis ENAE 483/788D – Principles of Space Systems Design 28

• Number of required pairings out of N options is (N)(N-1)/2 -

• Can use hierarchies of subgroupings to keep it manageable

U N I V E R S I T Y O F MARYLAND **Evaluation Metric** • Create a numerical scaling function, e.g. – "strongly agree" = 9 $-$ "agree" $= 3$ $-$ "neither agree nor disagree" = 1 $-$ "disagree" $= 1/3$ – "strongly disagree" = 1/9 • Numerical rankings are arbitrary, but often follow geometric progressions $-9, 3, 1, 1/3, 1/9$ $-8, 4, 2, 1, 1/2, 1/4, 1/8$ 29

ENAE 483/788D – Principles of Space Systems Design

Evaluation Matrix

• Fill out matrix preferring rows over columns

Note: if you have multiple people performing an AHP evaluation, populate a matrix like this for each of them, then add the matrices together and use that summary matrix as you proceed with the rest of the analysis.

ENAE 483/788D – Principles of Space Systems Design

Evaluation Matrix

• Fill out matrix preferring rows over columns • Fill opposite diagonal with reciprocals

U N I V E R S I T Y O F MARYLAND

Normalization of Matrix Elements

• Normalize columns by column sums

 \implies

27 3.44 6.11 0.78

Evaluation

• Average

Systems Analysis ENAE 483/788D – Principles of Space Systems Design

Akin's Laws of Spacecraft Design - #38

Capabilities drive requirements, regardless of what the systems engineering textbooks say.

References (Available Online)

- systems engineering approach)
- version pages are almost impossible to read without a magnifying glass)
- (Current version pages are almost impossible to read without a magnifying glass)
- (Older, superceded version, but includes more figures and is readable by mere mortals)
- pgs.]
- **NASA Goddard Space Flight Center Mission Design Processes** (The "Green Book") [860 Kb, 54 pgs.]
-

• **NASA Systems Engineering Handbook** - SP-6105 - June, 1995 [2.3 Mb, 164 pgs.] (Obsolete, but nice description of NASA's

• **NASA Systems Engineering Processes and Requirements** - NPR 7123.1A - March 26, 2007 [3.6 Mb, 97 pgs.] (Current

• **NASA Space Flight Program and Project Management Requirements** - NPR 7120.5D - March 6, 2007 [2.7 Mb, 50 pgs.]

• **NASA Program and Project Management Processes and Requirements** - NPR 7120.5C - March 22, 2005 [1.9 Mb, 174 pgs.]

• **NASA Goddard Space Flight Center Procedures and Guidelines: Systems Engineering** - GPG 7120.5B - 2002 [1.7 Mb, 31

• **NASA Systems Engineering "Toolbox" for Design-Oriented Engineers** - NASA RP-1538, December 1994 [9.1 Mb, 306 pgs]

Term Project 1

– Grad students and hypersonic capstone will each form their own team

U N I V E R S I T Y O F MARYLAND • Everyone will be assigned to a team of 4-5 people • The project will be to design an Earth launch vehicle – Details will be provided shortly – Each team will be required to submit detailed CAD images – Report will be in the form of presentation slides – Grad and hypersonic teams will go into greater depth and continue project throughout this term

– Focus will be on systems engineering, trade studies, and cost analysis

• Team project 2 will be to start work on 484 projects for next

• You will be assigned to a project and a specialty group, based

Team Project 2

- term
	- on your preferences (survey coming shortly)

Specialty Teams (Matrix Organization)

• Systems Analysis and Engineering • Mission Planning and Analysis • Crew Systems (as appropriate) • Loads, Structures, and Mechanisms • Power, Propulsion, and Thermal • Avionics, Flight Software, and Simulation • Additional assignment: Hardware team (as appropriate)

