The Space Environment

- Lecture #05 September 10, 2024
- Course schedule updates
- Planetary environments
- Gravitation
- Electromagnetic radiation
- Atmospheric particles
- Newtonian flow
- Solar wind particles
- Ionizing radiation
- Micrometeoroids/orbital debris
- **U N I V E R S I T Y O F MARYLAND** • Spacecraft charging

1

© 2024 University of Maryland - All rights reserved <http://spacecraft.ssl.umd.edu>

The Space Environment

"Space is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. I mean, you may think it's a long way down the road to the chemist, but that's just peanuts to space."

Douglas Adams, *The Hitchhiker's Guide to the Galaxy*, 1979

ENAE 483/788D – Principles of Space Systems Design

The Earth-Moon System

Earth

In The Same Scale...

Still In The Same Scale

Comparison of Basic Characteristics

Lunar Soil Bearing Limits

The Electromagnetic Spectrum

Electromagnetic The Wavelength in metres 10° $10⁴$ 10^{2} 1m $3x10^\circ$ $3x10^2$ $3x10^\circ$ $3x10^8$ Frequency in Hertz $3x10⁴$ Interaction non-thermal thermal Absorption in **This is for Earth ->** Atmosphere 40 20 in Percent Window₂ um Wave (MW ort Wave (SW) Wave (LW)

000

9

From ligo.org 2024

The Solar Spectrum

Ref: V. L. Pisacane and R. C. Moore, *Fundamentals of Space Systems* **Oxford University Press, 1994**

Solar Cycle

- Sun is a variable star with 11-year period
- UV output of sun increases thermal energy of upper atmosphere, accelerating atmospheric drag of LEO spacecraft
- Measured as solar flux at 10.7 cm wavelength (="F10.7")

Ref: Alan C. Tribble, *The Space Environment* **Princeton University Press, 1995**

11

F10.7 values for solar cycle 22.

F10.7 values for solar cycle 23.

Diurnal Variation of Atmospheric Temperature

Ref: V. L. Pisacane and R. C. Moore, *Fundamentals of Space Systems* **Oxford University Press, 1994**

Atmospheric Density with Altitude

Ref: V. L. Pisacane and R. C. Moore, *Fundamentals of Space Systems* **Oxford University Press, 1994**

Newtonian Flow

• Mean free path of particles much larger than spacecraft – no appreciable interaction of air molecules • Model vehicle/ atmosphere interactions as independent perfectly elastic collisions

Newtonian Analysis

α

ρ

15

A sin(*α*) *A*

v

mass $flux = (density)(swept area)(velocity)$

dm dt = (*ρ*)(*A* sin *α*)(*v*)

U N I V E R S I T Y O F

 $F =$

MARYLAND

Momentum Transfer

- Momentum perpendicular to wall is reversed at impact
- "Bounce" momentum is transferred to vehicle

• Momentum parallel to wall is unchanged

16

v sin(*α*)

v

v

F

dm

dt

$\Delta v = \rho v A \sin \alpha (2v \sin \alpha) = 2\rho v^2 A \sin^2 \alpha$

Lift and Drag $L = F \cos \alpha = 2\rho V^2 A \sin^2 \alpha \cos \alpha$

$D = F \sin \alpha = 2\rho V^2 A \sin^3 \alpha$

 $c_D =$ D $\frac{1}{2}\rho V^2 A$ $= 4 \sin^3 \alpha$ $c_L =$ L $\frac{1}{2}\rho V^2 A$ $= 4 \sin^2 \alpha \cos \alpha$

Example of Newtonian Flow Calcs

Consider a cylinder of length l, entering atmosphere transverse to flow

19

 $d\dot{m} = \rho dA \cos \theta V = \rho V \cos \theta r d\theta d\ell$ $\dot{n} = \rho dA \cos \theta V = \rho V \cos \theta r d\theta d\theta$ $dA = r d\theta dl$

 $dL = dF \sin \theta = 2\rho V^2 \cos \theta \sin \theta r d\theta d\theta$ $dF = d\dot{m}\Delta V = 2\rho V^2 \cos^2\theta r d\theta d\ell$ $dD = dF \cos \theta = 2\rho V^2 \cos^3 \theta r d\theta d\ell$

Integration to Find Drag Coefficient Integrate from $\theta = -\frac{\pi}{\sqrt{2}}$

 \int_{0}^{1}

 $dD=2\rho V^2r$ $\int_0^1 + \frac{\pi}{2}$ $\overline{2}$ $-\frac{\pi}{2}$ $\overline{2}$ \int_{0}^{l} 0 cos³ θdθdl \rightarrow π 2 $cos^3 \theta d\theta =$ 8 *ρV*² *rℓ*

By definition, $D = \frac{1}{2}\rho V^2 A c_D$ and, for a cylinder $\rho V^2 A c_D$ and, for a cylinder $A = 2r\ell$

> **The Space Environment ENAE 483/788D – Principles of Space Systems Design** 3

0

1

20

 ρV^2

 $D =$

 $\int_0^1 + \frac{\pi}{2}$

 $-\frac{\pi}{2}$

 $\overline{2}$

 $= 2\rho V^2$

 $\overline{2}$

 ρ V^2 $r \ell c_D =$

^rℓ[∫]

2

 $+\frac{\pi}{2}$

2

2

−*π*

2

3

 $r\ell \implies c_D =$

8

3

ENAE 483/788D – Principles of Space Systems Design

Orbit Decay from Atmospheric Drag

Makeup Δ**V Due To Atmospheric Drag**

Ref: Alan C. Tribble, *The Space Environment* **Princeton University Press, 1995**

The Space Environment ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994 23

FIG. 2.3. (a) Relative concentrations of atmospheric constituents during periods of minimum solar activity. (b) Relative concentrations of atmospheric constituents during periods of maximum solar

Atmospheric Constituents at Altitude

activity. (Adapted from U.S. Standard Atmosphere, 1976.)

- Annual surface erosion at solar max • Orbital altitude 500 km
- Material Erosion Rate (mm/yr) Silver .22 Chemglaze Z302 .079 Mylar .071 Kapton .061 Epoxy .048 Carbon .020 Teflon .00064 Aluminum .0000076

-
-

Atomic Oxygen Erosion Rates

The Van Allen Radiation Belts

Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

The Space Environment ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND 27 Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994

Cross-section of Van Allen Radiation Belts

U N I V E R S I T Y O F MARYLAND

Electron flux contours (E>1 MeV)

Electron Flux in Low Earth Orbit

The Origin of a Class X1 Solar Flare

ENAE 483/788D – Principles of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Heavy Ion Flux

Ref: Neville J. Barter, ed., TRW Space Data, TRW Space and Electronics Group, 1999

ENAE 483/788D – Principles of Space Systems Design

Radiation Dose vs. Orbital Altitude

Ref: Neville J. Barter, ed., TRW Space Data, TRW Space and Electronics Group, 1999

Trackable Objects On-orbit

Micrometeoroids and Orbital Debris

MMOD Sample Calculation

Flux=2.26x10-4 hits/m2-yr (3mm) For 0.1 hits/20 years, allowable flux= 2.26x10-5 hits/m2-yr (9 mm) $Flux =$ 1 hit $(221 \; \rm{m}^2)(20 \; \rm{yrs})$

Space Station module - cylindrical, 15' diam. X 43' long

Surface area=221 m2

Flux value for one hit in 20 years

$$
Area = \pi ld + 2\frac{\pi d^2}{4}
$$

MARYLAND

Damage from MMOD Impacts

Long Duration Exposure Facility (LDEF) • Passive experiment to test long-term effects of space exposure

• 57 experiments in 86 trays • Deployed April, 1984 • Retrieved January, 1990

Surprising Results from LDEF

- Presence of C-60 ("buckeyballs") on impact site
- than expected
- Local thermal hot spots did surprising levels of damage to blankets and coatings
- impacting particles
- Anomalies are typically due to design and workmanship, rather than materials effects

• Thermal blankets are effective barriers to smaller high velocity

37

• Much higher incidence of MMOD impacts on trailing surfaces

Typical MMOD Penetration from LDEF

Spacecraft Charging

Ref: Alan C. Tribble, The Space Environment Princeton University Press, 1995

References

• Vincent L. Pisacane and Robert C. Moore, Fundamentals of

- Alan C. Tribble, The Space Environment: Implications for Spacecraft Design Princeton University Press, 1995
- Space Systems Oxford University Press, 1994 (Chapter 2)
- Neville J. Barter, ed., TRW Space Data TRW Space and Electronics Group, 1999
- University Press, 1961

• Francis S. Johnson, Satellite Environment Handbook Stanford