Reliability, Redundancy, and Resiliency

* Lecture #06 — September 12, 2024

e Review of probability theory
e Component reliability

e Confidence

* Redundancy

e Reliability diagrams

* Intercorrelated failures

* System resiliency
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Review of Probability

e Probability that A occurs
0 < PA) < 1
e Probability that A does not occur
P(A)
e Sum of all probable outcomes
P(A)+ PA) =1
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Review of Probability

e Probability of both A and B occurring
P(A) N P(B) = P(A)P(B)

e Probability of either A or B occurring
P(A)U P(B) = 1 — P(A)P(B)
= 1—=[1-PA][l - P(B)]
— P(A) + P(B) — P(A)P(B)

/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
~ )

MARYLAND 3 ENAE 483/788D — Principles of Space Systems Design



Baseline Results VYALADOR

nformation Architects

Results in the reliability / safety space @
994

93 97 98 .987 .99

1 in 1,000,000

Curmrent ELY l’érl'ocjmance _
1 S-V equivalent
: ’ (SIC + SI)

sEss &
S8 T = -
P 3 < ﬁ /
1 in 100,000 et 1
= Nl ~Shuttle Mission (QRAS)
/Shl((le Ascent (QRAS)
1 in 10,000 ' |
95

Crew Escape

Apollo Forecast I; l. I.I.I 2

Target from crew memao

Crew Safety per Launch

1 in 1,000
1in 100 -
2 Shuttle with currentjescape
linld ———T T T T TTTTT v I LB AR T T T T T T T TTTT1
1in 1 linlo 1m20 1m33 1 in 100 1in 1,000 1 in 10,000

Failure Frequency per Launch



Simple Overview of Abort Reliability

Psurm’val e Plaunch U Pabort

Psurvz’val = (Plaunch a Pab()rt)

Psufr‘vival NN [(1 W\ Plaunch) (1 E Pabort)]

1 — Psurvival

Pavort = 1
i Plaunch
Psurvival == 09997 Plaunch = 0.97
1 —0.999
1 —0.97
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Effect of Successive Trials
e Any trial has possible results A and A (e.g., heads/tails)

e Possible outcomes of two trials:
- BothA = P = P(A)’
_ First A, thenA = P = P(A)P(A) = P(A)[]1 — P(A)]
_ First A, thenA = P = P(A)P(A) =[1 — P(A)]P(A)
_BothA = P =PAY =[1-PA)]
— All possible outcomes: P = P(A)* +2P(A)[1 — P(A)]+[1 — PA)* =1
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General Probability in Successive Trials

e For N trials: Py fatl P(AY"
Py i = NP(AYY~'[1 — P(A)]
NN - 1) i
Py fai1 = TR P(ANA[1 — P(A)]*
NN — 1)(N —2) =
e o =Y P(AN[1 = P(A))°
p A |- S P(AY AL = P(A)]*
At KN - KD
Combinations of K out of N
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Expected Value Theory

e Probability of an outcome does not determine value of the
outcome

e Define E(A) as the value associated with an outcome of A

e Combine probabilities and values to determine expected value

of outcome
EV = P(A)E(A) + P(A)E(A)

o [f rolling a die,
EV(roll) = P(1)E(1) + PQEQ) + P3)E(3) + P(4)E(4) + P(5)E(5) + P(6)E(6)
= (1/6)(1) + (1/6)(2) + (1/6)(3) + (1/6)(4) + (1/6)(5) + (1/6)(6) = 3.5
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Expected Value Example
e Maryland State Lottery - pick six numbers out of 49 (any order)

491 \

e Assume $10,000,000 jackpot
EV = P (win) E(win) + P(loss)E(loss)
EV = (7.151 x 1078) ($107) + (1)( - $1) = — $0.39
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How Long Do You Have to Play to Win?
 Odds of losing one play

1 — 1/13,983,816 = 0.9999999285

e How many times do you have to play until you have a 50/50
chance of winning? How many times can you play and lose
until your chance of a perfect record is only 50%?

(0.9999999285)" = 0.5 = N = 9,692,842

* Playing twice a week, it would take 93,200 years
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Utility Theory
 Numerical rating from expected value calculations does not
fully quantity utility

e Lottery example previously: utility of (highly unlikely) win
exceeds negative utility of small investment: risk proverse
U( + $10,000,000) > U( — $1)

e Imagine lottery where $1000 buys 1:500 chance at $1M -
EV=(.998)(-$1000)+(.002)($.999M)=$1000
risk adverse

U(+ $1,000,000) << U( — $1000)
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Component Reliability

Burn-in
Failures

Failure Rate A

Operating
Failures

End-of-life
Failures

Time
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Reliability Analysis

e Failure rate is defined as fraction ot currently operating units
failing per unit time

1 d

At) = - R(t)
R(t) dt

e The trend of operating units with time is then

f Rt dR(T

f M7)dt = - )

0 ] R(T)
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Reliability Analysis (continued)

e Evaluation of the definite integrals gives
ﬁ: Mt)dt =-1n| R(?) |

e Assuming that A is constant over the operating lifetime,

R(t) = exp[—jj)u(r)dr] =e "

e Att=1/ A, 1/e of the original units are still operating (defined
as mean time between failures)
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Reliability Analysis (continued)

* Frequently assess component reliability based on reciprocal of

failure rate A :
A

R(t)=e MTBF

where MTBF=mean time between failures

e For a mission duration of N hours, estimate of component
reliability becomes

N
R(mission) =e "'5"
/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Verifying a Reliability Estimate

e Given a unit reliability of R, what is the probability P of testing
it 20 times without a failure?

e What is the probability Q that you will see one or more
tailures?

_R=099 = P, ... =08179 = Q=0.1821
_R=095 = P, ... .=03584 = Q=0.6416
_R=090 = P, ... =01216 = Q=0.8784
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Confidence

e The confidence C in a test result is equal to the probability that
you should have seen worse results than you did

P(observed and all better outcomes) + C =1
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Example of Confidence - Saturn V
e 13 vehicle flights without a failure

* Assume a reliability value of R
R¥Y+C =1
e Valador report (slide 7) listed 95% reliability

C=1—RYS=1-0.953 = 48.7%

e What reliability could we cite with 80% confidence?
R=(1-C)Y13 =(.20-07692 — g8 4%
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Example of Confidence
* 100 vehicle tlights with 1 tailure

* Assume a reliability value ot R
R™+100R”(1-R)+C =1

* Trade off reliability with contidence values

0.95 0.96 0.97 0.98 0.99 1
Mission Reliability
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Falcon 9 Reliability Curves (2/28/16)
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Falcon 9 Reliability Curves (2/27/18)

©
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Definition of Redundancy

e Probability of k out of n units working =
(number of combinations of k out of n) X
P(k units work) X P(n-k units fail)

P(k|n) = n—!P"(l — p)tk
- =D

e For the Falcon 9 example,

S
%Rn—z(l _RP2HnR A =R+ R s C=1

The results we saw All better results
@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
\-)/ MARYLAND 27 ENAE 483/788D — Principles of Space Systems Design




Redundancy Example

3 parallel computers, each has reliability of 95%:
e Probability all three work

P(3)= P’ =(95) = 8574
* Probability exactly two work

P(2)=3P*(1- P)=3(.95)°(.05) = .1354
* Probability exactly one works

P(1)=3P(1- P)* =3(.95)(.05)" = .0071
e Probability that none work

P(0)=(1-P)’ =(.05)" =.0001
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Redundancy Example

3 parallel computers, each has reliability of 95%:
e Probability all three work

P(3) =.8574
* Probability at least two work

P(3) + P(2) = 8574 +.1354 = 9928

* Probability at least one works

P(3)+ P(2)+ P(1) =.9928 + .0071 = .9999
e Probability that none work
P(0)=(1-P)’ =(.05) =.0001
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Reliability Diagrams

Example ot Apollo Lunar Module ascent engine

Three valves in each of oxidizer and fuel lines

One in each set of three must work

RV:O - 9 —= Rsystem: - 998

R,

UNIVERSITY OF
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Reliability Diagrams (how not to...)

R,

R,
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372
Rsystem = [1 - (1 — RV) ]
R,=0.9 —> Ry qem=.998

2\3
Rsystem = [1 - (1 _ Rv ) ]
R,=0.9 > R, qem=.993
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@ Earth Departure Configuration

8 launches and 7 dockings required to start mission

1 6 "~ 7 8

BEmHHE
Bl i St

/
-
Assume Plaunch=0.97 and Pdock=0.99
Pno failures= Plaunch8 Pdock7=0-73

Pall boost modules=— Plaunch6 Pdock5=0-792

Y
S

Low-Cost Return to the Moon

Pall boost modules=— Pno failures T P1 failure =

0.792+6(1'PIaunch)PIaunch6 Pdock5 — 0.792+0.143 — 0.935

: Space Systems Laboratory — University of Maryland



@ Spares - The Big Picture

- Have to get 6 functional boost modules for
each of 10 missions

- Have to get functional lunar vehicle and
crew module for each mission

- Assume composite reliability
=0.97(0.99)=0.96

Low-Cost Return to the Moon

P(n|n)=p"

P(n|n+1) = n(p™ )1 - p)(p)

P(n|n+2) = "D pn2y0 _pep)
P |ntm)=—"" ("™ (1 - p)"(p)

(n —m)!Im!

- «
R

Space Systems Laboratory — University of Maryland



@ Effect of Fleet Spares on Program

1 - S v v v = a A
o _
0.9 _
0.8 |
_
0.7 |
0.6 |
N ¢ 10 flights

| " 60 flights

04

Program Success Probability
O
Ol

Low-Cost Return to the Moon

Number of Spares

_______ Space Systems Laboratory — University of Maryland



@ Spares Strategy Selection

- VSE approach:
— 2 launches and 1 dock: P=(0.97)2(0.99)=0.931
— Program reliability over 10 missions:
0.93110=0.492
- Goal: meet VSE program reliability
— 1 lander and 1 CEV spare - p=0.9308 each
— 2 boost module spares - p=0.5464
— Program reliability: (0.9308)2(0.5464)=0.473

» Alternate goal: 85% program reliability

— 2 lander, 2 CEV, 4 BM spares:
(0.9893)2(0.8871)=0.868

— 1 lander, 1 CEV, 6 BM spares:

(0.9308)2(0.9838)=0.852
lll Space Systems Laboratory — University of Maryland

“w»_ Low-Cost Return to the Moon



Intercorrelated Failures

e Some failures in redundant systems are common to all units
— Software failures
— “Daisy-chain” failures

— Design detects

e Following a failure, there is a probability f that the failure
causes a total system failure

/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Intercorrelated Failure Example

3 parallel computers, each has reliability of 95%, and a 30%
intercorrelated failure rate:
e Probability all three work
P(3)= P’ =(95)’ = 8574
e Probability exactly two work (one failure)
P(2)=3P*(1- P)=3(.95)°(.05) = .1354
— Probability the failure is benign (system works)
P(2, ) = 7(.1354) = 0948
— Probability of intercorrelated tailure (system dies)
P(2,m itre ) = 3(:1354) = 0406

@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Intercorrelated Failure Example

(continued from previous slide)

e Probability exactly one works (2 failures)
P(1)=3P(1- P)* =3(.95)(.05)" = .0071
— Probability that both failures are benign
P(1,,, )= 77(.0071) = 0035

— Probability that a failure is intercorrelated

P(1 = (1-.7°)(.0071) = 0036

system failure )
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Redundancy Example with Intercorrelation

3 parallel computers, each has reliability of 95%, and a 30%
intercorrelated tailure rate:

e Probability all three work
P(3) =.8574

e Probability at least two work

— 8574 +.0948 = 9522  (was 9928)

* Probability at least one works

= 9522 +.0035 = 9557 (was .9999)

/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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System Reliability with 30% Intercorrelation

1 ———

0.98 /

0.96 |
> 0.94 —P(1)
= P (2)
§ 0.92 P (3)
E 0.9 P(4)
Q - P (3)intercorrelated
c% 0.86 - P(4)intercorrelated

0.84

0.82

0.8 \ \ \
0.8 0.85 0.9 0.95 1
Unit Reliability
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Probabilistic Risk Assessment

e [dentification and delineation of the combinations of events
that, if they occur, could lead to an accident (or other undesired
event)

e Estimation of the chance of occurrence for each combination

e Estimation of the consequences associated with each

combination.
/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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PRA Process Flowchart

|dentification of
Initiating Events

v

Event Scenario
Development

Mission and System
Descriptions, Hazard
Analyses

\ 4

Failure Model
Development

System Reliability Analyses,
Historical Data

v

Uncertainty and
Sensitivity
Analyses

System and Subsystem
Reliability Analyses,
Historical & Verification Data

v

Verified Vehicle
Failure

Probability

Monte Carlo Simulation,
Historical & Verification Data

FAA, “Guide to Reusable Launch and Reentry Vehicle Reliability Analysis™ April 2005
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System Breakdown Chart

FAA, “Guide to Reusable Launch and Reentry Vehicle Reliability Analysis™ April 2005

% UNIVERSITY OF

% MARYLAND

Assembly 3

Subsystem 1 Subsystem 2 Subsystem 3
Assembly 1 Assembly 2
Subassembly 1 Subassembly 2 Subassembly 3

Component 1

Component 2

Component 3

Part 1

Part 2

38
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Failure Modes and Effects Analysis

©

Mission: Satellite Delivery to GEO
Phase: Orbital Insertion

Ref. Drawing: GTYD-1002B008

System: Upper Stage Propulsion System

FAILURE MODES, EFFECTS, AND CRITICALITY ANALYSIS WORKSHEET

Sheet 1 of 20

Prepared by: John Smith
Reviewed by: Janet Jones
Approved by: Sharon Jackson
Date: January 2, 2004

Detection
: . : : Methods
ID [tem Failure Failure Failure Risk and
Modes Causes Effects Assessment
Controls
Sev. Prob. Risk
2.0 | Combustion | a. Coolant a. Manufact. a. Reduced all |aC |a.b a. Inspect
Chamber loss Process performance, welds
: problem burn-through, blll (b.D |b.14
b. Seal failure . b. Seal
. possible crash
b. Cyclic and infury to redundancy
fatigue : Jury
involved
public
b. Reduced
performance

FAA, “Guide to Reusable Launch and Reentry Vehicle Reliability Analysis™ April 2005

UNIVERSITY OF
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Fault Tree Analysis

©

Thruster supplied with
propellant after cutoff

AND

Pr=0.016

Isolation valve 1 remains
open after cutoff

Pv1 =0.125
[or]
Q Valve fails to
close

Operator ~
fails to ‘ ORl Pect = 0.079

5o,

pop =0.05
Contamination Mechanical

Failure
P.=0.03 Pue = 0.05

Isolation va

open after cutoff

ve 2 remains

Pvz =0.125
OR

Q Valve fails to
5 close
perator N
fails to ‘ OR \ Prc2 = 0.079
close
e
Contamination Mechanical
Failure
P.=0.03 Pue = 0.05

FAA, “Guide to Reusable Launch and Reentry Vehicle Reliability Analysis™ April 2005
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U.S. Launch Reliability - 5 yr. rolling avgs.
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LV Subsystem Failures 1984-2004

©

Individual Percent

Failure Ty.pe Failures Total Events Failure Raf
Liquid Propulsion (Start) 3 1255 0.239%
Liquid Propulsion (In-flight) 3 1255 0.239%
Total Liquid Failure 6 1255 0.478%
Solid Propulsion (Shell) 4 1831 (all solids) 0.218%
Solid Propulsion (TVC) 3 571 (TVC only) 0.525%
Solid Propulsion with TVC (TVC and 3 y 0.743%
Shell Failure Modes) el
Stage, Booster, and Payload Separations 6 2577 0.233%
Fairing Separation 1 301 0.280%
Small Solid Booster Separations 1" 1165 0.086%
Electrical 2 470 0.426%
Avionics 2 470 0.426%
Other 1 470 0.213%

*Did not result in total mission loss.

Futron Corporation, “Design Reliability Comparison for SpaceX Falcon Vehicles” Nov. 2004

UNIVERSITY OF

MARYLAND
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Expected Failure Rates from Prop/Sep
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01.5520/0-—.—--—------------—.—--q---q-h----»-------—.

Expected Failure Rate

2.000% -
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Falcon | FalconV AlasV AtlasV Deltall Deltall DeltalVv Detlad4 Minotlaur Pegasus Shulle Taurus
401 952 7326-10 7925H- Medium  Heavy XL

10L

Futron Corporation, “Design Reliability Comparison for SpaceX Falcon Vehicles” Nov. 2004
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Failure Rates from All Causes
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Futron Corporation, “Design Reliability Comparison for SpaceX Falcon Vehicles” Nov. 2004
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Concept of System Resiliency

e Initial flight schedule
Sl o r | O TR Sy W S, S I &

* Hiatus period following a tailure
o S La S S L

e Backlog of payloads not flown in hiatus
R O R

e Surge to fly off backlog
F X F 0 ok

e Resilient if backlog is cleared before next failure occurs (on average)

s UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Resiliency Variables

r - nominal flight rate, flts/yr
d - down time following failure (yrs)

k - fraction of flights in backlog retained

S - surge flight rate/nominal flight rate

m - average / expected flights betwee
rd - number of missed flights

krd - number of flights in backlog
(S5-1)r - backlog flight rate

@: UNIVERSITY OF

&\-)!/ MARYLAND 46

n failures

Reliability, Redundancy, and Resiliency
ENAE 483/788D — Principles of Space Systems Design



Definition of Resiliency

e Example for Delta launch vehicle
e r =12 flts/yr

e d=0.5yrs Srkd

e k=0.8 S—lsm
e

* m = 30

e Srkd /(5-1) = 14.4 < 30 - system is resilient!

/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Shuttle Resiliency (post-Challenger)

r=9 flts/yr

d =2.5yrs
k=0.8

S=.67 (6 flts/ yr)
m = 25

v'System has negative surge capacity due to reduction in fleet
size - cannot ever recover from hiatus without more extreme
measures

/@ UNIVERSITY OF Reliability, Redundancy, and Resiliency
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Modified Resiliency

k” - retention rate of all future payloads

(k’<S for S<1)
* New governing equation for resiliency:
Srk'd
=m
Sk’

e Implication for shuttle case:

v k<.417 to achieve modified resiliency
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Shuttle Resiliency (post-Columbia)
o r=>5flts/yr
e d=2yrs
e S=.8(4flts/yr)
e m = 56 (average missions/ failure)

e Modified resiliency requires k'<0.7 for all future payloads
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Today’s Tools

e (Calculation of probabilities

e Expected value and utility theory

e Failure rate and MTBF

¢ Redundancy and intercorrelated failures

e Resiliency calculations
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