

U N I V E R S I T Y O F

MARYLAND

Reliability, Redundancy, and Resiliency

- Lecture #06 September 12, 2024
- Review of probability theory
- Component reliability
- Confidence
- Redundancy
- Reliability diagrams
- Intercorrelated failures
- System resiliency

• Resiliency in fixed fleets

1

© 2024 University of Maryland - All rights reserved <http://spacecraft.ssl.umd.edu>

 $0 \leq P(A) \leq 1$ $P(\overline{A})$

Review of Probability

• Probability that A occurs

• Probability that A does not occur

• Sum of all probable outcomes

 $P(A) + P(\overline{A}) = 1$

 $P(A) \cap P(B) = P(A)P(B)$ $P(A) \cup P(B) = 1 - P(\overline{A})P(\overline{B})$ $= 1 - [1 - P(A)][1 - P(B)]$ $= P(A) + P(B) - P(A)P(B)$

Review of Probability • Probability of both A and B occurring • Probability of either A or B occurring

Baseline Results

Results in the reliability / safety space

 $P_{survival} = P_{launch} \cup P_{abort}$ $P_{survival} = 1 - (\bar{P}_{launch} \cap \bar{P}_{abort})$ $P_{survival} = 1 - [(1 - P_{lounch})(1 - P_{abort})]$ $P_{abort} = 1 - \frac{1 - P_{survival}}{1 - P_{current}}$ 1 *Plaunch* $P_{abort} = 1 - \frac{1 - 0.999}{1 - 0.97}$ $\frac{1 - 0.97}{1 - 0.97} = 0.9667$ $P_{survival} = 0.999; P_{launch} = 0.97$

Simple Overview of Abort Reliability

− All possible outcomes: $P = P(A)^2 + 2P(A)[1 - P(A)] + [1 - P(A)]^2 = 1$

Effect of Successive Trials

• Any trial has possible results A and A (e.g., heads/tails) • Possible outcomes of two trials: $-$ Both $A \implies P = P(A)$ \rightarrow First A, then $A \implies P = P(A)P(A) = P(A)[1 - P(A)]$ $-P$ First A, then $A \implies P = P(A)P(A) = [1 - P(A)]P(A)$ $-P = P(A)^2 = [1 - P(A)]^2$ 2

General Probability in Successive Trials • For N trials: $P_{0 \, fail} = P(A)$ *N* $P_{1 \text{fail}} = NP(A)$ *N*−1 $[1 - P(A)]$ $P_{2 \, fail} =$ *N*(*N* − 1) 2 *P*(*A*) *N*−2 $[1 - P(A)]$ 2 $P_{3 \, fail} =$ *N*(*N* − 1)(*N* − 2) 2(3) *P*(*A*) *N*−3 $P_{K \, fail} =$ *N*! $K!(N - K!)$

$[1 - P(A)]$ 3

$P(A)^{N-K}[1-P(A)]^K$

7

Combinations of K out of N

Expected Value Theory

- Probability of an outcome does not determine value of the outcome
- Define $E(A)$ as the value associated with an outcome of A
- of outcome
- If rolling a die,

• Combine probabilities and values to determine expected value

 $EV = P(A)E(A) + P(\overline{A})E(\overline{A})$

8

 $EV(roll) = P(1)E(1) + P(2)E(2) + P(3)E(3) + P(4)E(4) + P(5)E(5) + P(6)E(6)$ $= (1/6)(1) + (1/6)(2) + (1/6)(3) + (1/6)(4) + (1/6)(5) + (1/6)(6) = 3.5$

• Assume \$10,000,000 jackpot $EV = P(win) E(win) + P(logs) E(logs)$ $EV = (7.151 \times 10^{-8}) (\$10^7) + (1)(-\$1) = -\0.39

Expected Value Example

 $P(win) =$

9

• Maryland State Lottery - pick six numbers out of 49 (any order)

$= 1/13,983,816$

49!

6!43!)

−1

How Long Do You Have to Play to Win?

• Odds of losing one play

• How many times do you have to play until you have a $50/50$ chance of winning? How many times can you play and lose until your chance of a perfect record is only 50%? $(0.9999999285)^{N} = 0.5 \implies N = 9,692,842$

• Playing twice a week, it would take 93,200 years

10

1 − 1/13,983,816 = 0.9999999285

Utility Theory

• Numerical rating from expected value calculations does not

• Lottery example previously: utility of (highly unlikely) win $U(+\$10,000,000) \gg U(-\$1)$

- fully quantify utility
- exceeds negative utility of small investment: *risk proverse*
- Imagine lottery where \$1000 buys 1:500 chance at \$1M -EV=(.998)(-\$1000)+(.002)(\$.999M)=\$1000 *risk adverse*

11

U(+ \$1,000,000) ⋘ *U*(− \$1000)

ENAE 483/788D – Principles of Space Systems Design

Component Reliability

Reliability Analysis

• Failure rate is defined as fraction of currently operating units

failing per unit time

 $\lambda(t) = -$

• The trend of operating units with time is then

 $\lambda(\tau)$ *t* $\int_0^{\infty} \lambda(\tau) d\tau = -$

1 *R*(*t*) *d dt R*(*t*)

dR(^τ) 1 $R(\tau)$ *R*(*t*) ∫

$\int_0^{\infty} \lambda(\tau) d\tau = -\ln[R(t)]$

Reliability Analysis (continued) • Evaluation of the definite integrals gives

 $\lambda(\tau)$ *t*

• Assuming that λ is constant over the operating lifetime, $R(t) = \exp[-\int_{0}^{\infty} \lambda(\tau) d\tau]$

as mean time between failures)

14

• At t= $1/\lambda$, $1/e$ of the original units are still operating (defined 0 *t* $\left[-\int_0^{\cdot} \lambda(\tau) d\tau \right] = e^{-\lambda t}$

Reliability Analysis (continued)

• Frequently assess component reliability based on reciprocal of

failure rate λ :

where MTBF=mean time between failures • For a mission duration of N hours, estimate of component reliability becomes

$$
[on) = e^{-\frac{N}{MTBF}}
$$

15

 $R(missi)$

- it 20 times without a failure?
- What is the probability Q that you will see one or more failures?
	- $-R = 0.99 \implies P_{20 \text{ successes}} = 0.8179 \implies Q = 0.1821$ $-R = 0.95 \implies P_{20 \text{ successes}} = 0.3584 \implies Q = 0.6416$ $-R = 0.90 \implies P_{20 \text{ success}} = 0.1216 \implies Q = 0.8784$

Verifying a Reliability Estimate

• Given a unit reliability of R, what is the probability P of testing

• The confidence C in a test result is equal to the probability that

Confidence

you should have seen worse results than you did

P(observed *and all better outcomes*) + C =1

Example of Confidence - Saturn V • 13 vehicle flights without a failure • Assume a reliability value of R $R^{13} + C = 1$

 $C = 1 - R^{13} = 1 - 0.95^{13} = 48.7\%$

• Valador report (slide 7) listed 95% reliability

• What reliability could we cite with 80% confidence? $R = (1 - C)$ $\frac{1}{13} = 0.2^{0.07692} = 88.4\%$

$R^{100} + 100R^{99}(1 - R) + C = 1$

Example of Confidence • 100 vehicle flights with 1 failure • Assume a reliability value of R

• Trade off reliability with confidence values

ENAE 483/788D – Principles of Space Systems Design

Falcon 9 Reliability Curves (2/27/18)

U N I V E R S I T Y O F MARYLAND

Definition of Redundancy

• Probability of k out of n units working = (number of combinations of k out of $n)$ \times $P(k \text{ units work}) \times P(n-k \text{ units fail})$

 $P(k|n) =$

• For the Falcon 9 example,

22

$$
\frac{n(n-1)}{2}R^{n-2}(1-R)^2
$$

The results we saw All better results

n! $k!(n - k)!$ $P^{k}(1-P)$ *n*−*k*

$2 + nR^{n-1}(1 - R) + R^n + C = 1$

Redundancy Example 3 parallel computers, each has reliability of 95%: • Probability all three work • Probability exactly two work • Probability exactly one works • Probability that none work $P(3) = P³ = (.95)$ 3 $=.8574$ $P(2) = 3P²(1 - P) = 3(.95)$ 2 *P*(1) = 3*P*(1− *P*) 2 $= 3(.95)(.05)$ $P(0) = (1 - P)$ 3 $= (.05)$ 3 $= .0001$

$(.05) = .1354$

2 $=.0071$

Redundancy Example 3 parallel computers, each has reliability of 95%: • Probability all three work • Probability at least two work • Probability at least one works • Probability that none work *P*(3) = .8574 $P(3) + P(2) = .8574 + .1354 = .9928$ $P(0) = (1 - P)$ 3

24

$P(3) + P(2) + P(1) = .9928 + .0071 = .99999$

$= (.05)$ 3 $= .0001$

- Example of Apollo Lunar Module ascent engine • Three valves in each of oxidizer and fuel lines
- One in each set of three must work
- $R_v = 0.9$ --> $R_{system} = .998$

Reliability Diagrams

 $R_{system} = [1 - (1 - R_v)]$ 3 $\lfloor 1-(1-R_v)^{\circ}\rfloor$ 2 $R_v = 0.9$ --> $R_{system} = .998$

$R_{system} = [1 - (1 - R_{v})]$ 2) $\left[1 - (1 - R_v^2)^3\right]$ $R_v = 0.9$ --> $R_{system} = .993$

Reliability Diagrams (how not to…)

Space Systems Laboratory – University of Maryland

Earth Departure Configuration

8 launches and 7 dockings required to start mission

Moon **Low-Cost Return to the Moon** the $\overline{\mathbf{c}}$ Return Low-Cost

Space Systems Laboratory – University of Maryland

- **each of 10 missions**
- **crew module for each mission**
- **Assume composite reliability =0.97(0.99)=0.96**
	- $P(n \mid n) = p^n$
	- $P(n \mid n+1) = r$
	- $P(n \mid n+2) =$

 $P(n \mid n+m) =$

Spares - The Big Picture

• **Have to get 6 functional boost modules for**

• **Have to get functional lunar vehicle and**

$$
n(p^{n-1})(1-p)(p)
$$

\n
$$
\frac{n(n-1)}{2}(p^{n-2})(1-p)^{2}(p)
$$

\n
$$
\frac{n!}{(n-m)!m!}(p^{n-m})(1-p)^{m}(p)
$$

Moon **Low-Cost Return to the Moon** Return to the Low-Cost

Space Systems Laboratory – University of Maryland

Effect of Fleet Spares on Program

Noon **Low-Cost Return to the Moon** the $\overline{\mathbf{c}}$ Return SON-Cost

Space Systems Laboratory – University of Maryland

Spares Strategy Selection

- **VSE approach:**
	- **2 launches and 1 dock: P=(0.97)2(0.99)=0.931** – **Program reliability over 10 missions:**
	- **0.93110=0.492**
- **Goal: meet VSE program reliability**
	- **1 lander and 1 CEV spare p=0.9308 each**
	- **2 boost module spares p=0.5464**
	- **Program reliability: (0.9308)2(0.5464)=0.473**
- **Alternate goal: 85% program reliability**
	- **2 lander, 2 CEV, 4 BM spares: (0.9893)2(0.8871)=0.868**
	- **1 lander, 1 CEV, 6 BM spares: (0.9308)2(0.9838)=0.852**

Intercorrelated Failures

• Some failures in redundant systems are common to all units – Software failures – "Daisy-chain" failures – Design defects • Following a failure, there is a probability f that the failure causes a total system failure

U N I V E R S I T Y O F 3 parallel computers, each has reliability of 95%, and a 30% intercorrelated failure rate: • Probability all three work • Probability exactly two work (one failure) – Probability the failure is benign (system works) – Probability of intercorrelated failure (system dies) $P(3) = P³ = (.95)$ 3 $P(2) = 3P²(1 - P) = 3(.95)$ $P(2_{\text{safety}}) = .7(.1354) = .0948$ $P\left(2_{system\ failure}\right) = .3(.1354) = .0406$

MARYLAND

 $=.8574$ 2 $(.05) = .1354$

Intercorrelated Failure Example

Intercorrelated Failure Example (continued from previous slide) • Probability exactly one works (2 failures) – Probability that both failures are benign – Probability that a failure is intercorrelated *P*(1) = 3*P*(1− *P*) 2 $P(1_{\text{safety}}) = .7^2(.0071) = .0035$ $P(1_{system failure}) = (1-.7^2)(.0071) = .0036$

$= 3(.95)(.05)$ 2 $=.0071$

Redundancy Example with Intercorrelation 3 parallel computers, each has reliability of 95%, and a 30% intercorrelated failure rate: • Probability all three work • Probability at least two work • Probability at least one works $P(3) = .8574$

= .8574 +.0948 = .9522 (*was*.9928)

= .9522 +.0035 = .9557 (*was*.9999)

MARYLAND

System Reliability with 30% Intercorrelation

Probabilistic Risk Assessment

• Identification and delineation of the combinations of events that, if they occur, could lead to an accident (or other undesired

- event)
- Estimation of the chance of occurrence for each combination • Estimation of the consequences associated with each combination.

Reliability, Redundancy, and Resiliency ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND 37 FAA, "Guide to Reusable Launch and Reentry Vehicle Reliability Analysis" April 2005

Mission and System Descriptions, Hazard Analyses

System Reliability Analyses, Historical Data

System and Subsystem Reliability Analyses, Historical & Verification Data

Monte Carlo Simulation, **Historical & Verification Data**

PRA Process Flowchart

Reliability, Redundancy, and Resiliency ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND 38 FAA, "Guide to Reusable Launch and Reentry Vehicle Reliability Analysis" April 2005

System Breakdown Chart

Reliability, Redundancy, and Resiliency ENAE 483/788D – Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND 39 FAA, "Guide to Reusable Launch and Reentry Vehicle Reliability Analysis" April 2005

FAILURE MODES, EFFECTS, AND CRITICALITY ANALYSIS WORKSHEET

Sheet 1 of 20

Prepared by: John Smith

Reviewed by: Janet Jones

Approved by: Sharon Jackson

Date: January 2, 2004

Failure Modes and Effects Analysis

System: Upper Stage Propulsion System

Mission: Satellite Delivery to GEO

Phase: Orbital Insertion

Ref. Drawing: GTYD-1002B008

Fault Tree Analysis

U.S. Launch Reliability - 5 yr. rolling avgs.

U N I V E R S I T Y O F

MARYLAND

LV Subsystem Failures 1984-2004

42

Futron Corporation, "Design Reliability Comparison for SpaceX Falcon Vehicles" Nov. 2004

Expected Failure Rates from Prop/Sep

- Initial flight schedule ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈
- Hiatus period following a failure ✈ ✠ ✈ ✈ ✈ ✈ ✈
- Backlog of payloads not flown in hiatus ✈ ✈ ✈ ✈
- Surge to fly off backlog ✈ ✠ ✈ ✈ ✈✈ ✈✈ ✈✈✈
- Resilient if backlog is cleared before next failure occurs (on average)

Concept of System Resiliency

Resiliency Variables

r - nominal flight rate, flts/yr d - down time following failure (yrs) k - fraction of flights in backlog retained S - surge flight rate/nominal flight rate m - average/expected flights between failures rd - number of missed flights krd - number of flights in backlog (S-1)r - backlog flight rate

Definition of Resiliency • Example for Delta launch vehicle • $r = 12$ flts/yr \bullet d = 0.5 yrs • $k = 0.8$ $• S = 1.5$ \bullet m = 30 • Srkd/(S-1) = $14.4 < 30$ - system is resilient! *Srkd S* −1 ≤ *m*

Shuttle Resiliency (post-*Challenger***)**

 $r = 9$ flts/yr $d = 2.5$ yrs $k = 0.8$ $S = .67 (6 \text{ fits/yr})$ $m = 25$

 \checkmark System has negative surge capacity due to reduction in fleet measures

size - cannot *ever* recover from hiatus without more extreme

k' - retention rate of all future payloads $(k' \leq S$ for $S < 1)$

• Implication for shuttle case: \sqrt{k} <.417 to achieve modified resiliency

Modified Resiliency

• New governing equation for resiliency:

Srk !*d*

S − *k* ! ≤ *m*

Shuttle Resiliency (post-*Columbia***)**

- $r = 5$ flts/yr
- $d = 2$ yrs
- $S = .8 (4 \text{ fits}/\text{yr})$
- m = 56 (average missions/failure) • Modified resiliency requires k'≤0.7 for all future payloads

Today's Tools

- Calculation of probabilities • Expected value and utility theory • Failure rate and MTBF
- Redundancy and intercorrelated failures • Resiliency calculations