Cost Estimation and Engineering Economics

- Lecture #07 September 17, 2024
- Cost sources
- Vehicle-level costing heuristics
- Learning curves
- Inflation
- Cost discounting
- Return on investment
- Cost/benefit ratios
- Life cycle costing
- Cost spreading

© 2024 University of Maryland - All rights reserved http://spacecraft.ssl.umd.edu

Cost Analysis

- and operating the system
- Indirect Costs required to do business, but not directly associated with development or operations
 - Management
 - Profit
 - Non-operational facilities
 - Overhead

Direct Costs - directly related to designing, testing, building,

2

Direct Cost Breakdown

- Non-recurring costs only incurred once in program, such as design
- Per vehicle
- Per flight
- Per year

• Recurring costs - reoccur throughout the life of the program

Nonrecurring Cost Sources

- Research
- Design
- Development
- Test and evaluation
- Facilities
- Tooling

Cost Estimation and Engineering Economics ENAE 483/788D – Principles of Space Systems Design

4

Recurring Cost Sources

- Vehicle manufacturing
- Mission planning
- Pre-flight preparation and check-out
- Flight operations
- Post-flight inspection and refurbishment
- Range costs
- Consumables (e.g., propellants)
- Training

5

Refurbishment

- Cost associated with maintenance and upkeep on reusable vehicles between flights
- that is required for average post-flight refurbishment
 - Airliner: ~0.001%
 - Fighter jet: ~0.01%
 - X-15: 3%
 - Shuttle: 6-20%
- Major contributor to space flight costs

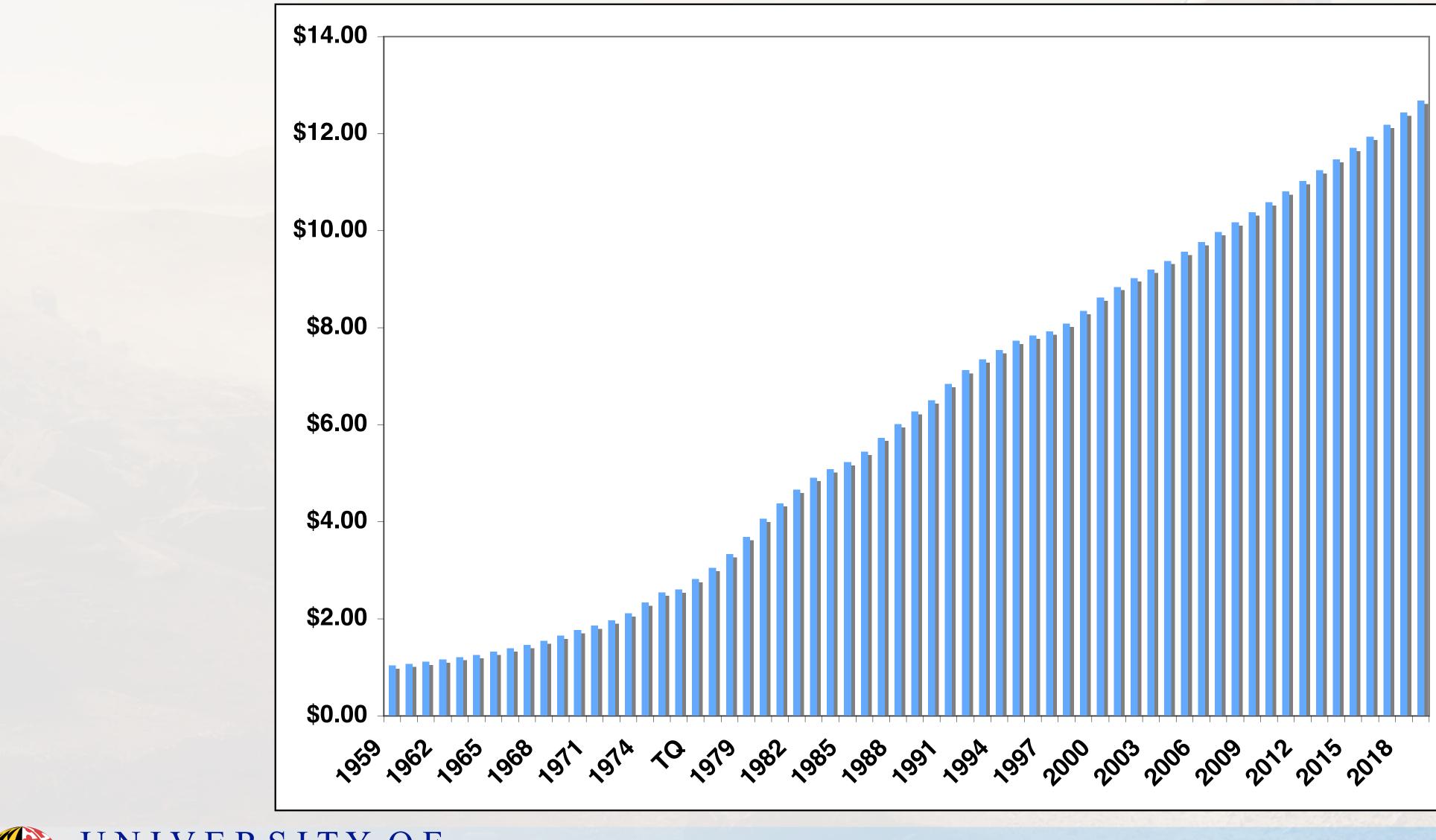
• Refurbishment fraction f_R - fraction of first unit production cost

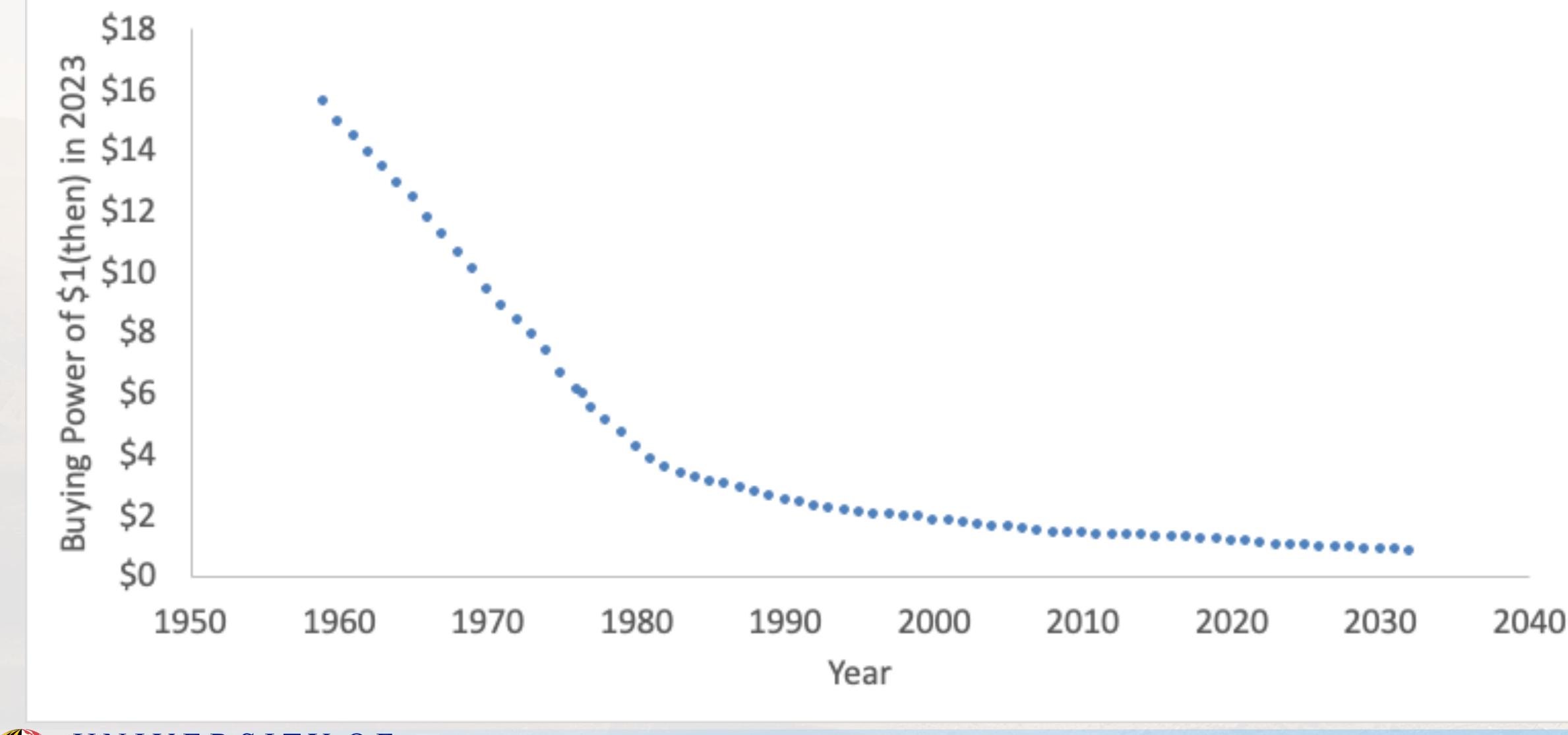
6

Inflation and the Changing Value of Money

- What do we mean when we talk about a specific dollar figure?
- As money supply and economy expand, buying power of money decreases
- A fixed sum of money is worth less from year to year
- "Real year dollars" what specific year the money is quoted for (e.g., "\$M2000") • "Constant year dollars" - costing multiyear program based on buying power in
- single specified year (inflation added later)

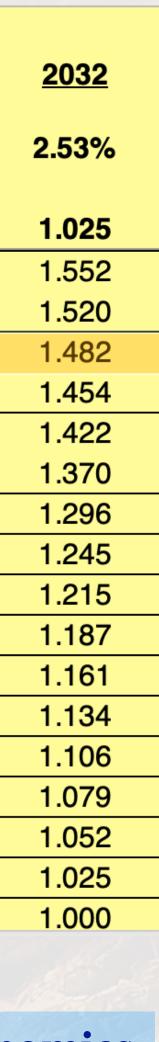
7


Annual NASA Inflation Rates 1960-2020


Cost of Comparable NASA Components

Effect of Inflation on Buying Power in 2023

10



NASA Inflation Factors 1988-2020

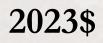
	TION	INDEX(A	CTUALS	THRU Sep	tember 20	22)										
YEAR	<u>017</u>	<u>2018</u>	<u>2019</u>	<u>2020</u>	<u>2021</u>	2022	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>	<u>2029</u>	<u>2030</u>	<u>2031</u>	
INFL.RATE	.1%	2.5%	1.9%	2.2%	3.8%	5.7%	4.1%	2.5%	2.3%	2.3%	2.4%	2.48%	2.55%	2.58%	2.56%	
FACTORS	.021	1.025	1.019	1.022	1.038	1.057	1.041	1.025	1.023	1.023	1.024	1.025	1.026	1.026	1.026	
FROM 2016	.021	1.047	1.067	1.091	1.132	1.197	1.246	1.278	1.307	1.337	1.369	1.403	1.439	1.476	1.514	
FROM 2017	.000	1.025	1.045	1.068	1.109	1.172	1.220	1.251	1.280	1.309	1.340	1.374	1.409	1.445	1.482	
FROM 2018		1.000	1.019	1.042	1.081	1.143	1.190	1.220	1.248	1.277	1.307	1.340	1.374	1.409	1.445	
FROM 2019			1.000	1.022	1.061	1.121	1.167	1.197	1.225	1.253	1.282	1.314	1.348	1.383	1.418	
FROM 2020				1.000	1.038	1.097	1.142	1.171	1.198	1.225	1.255	1.286	1.319	1.353	1.387	
FROM 2021					1.000	1.057	1.100	1.128	1.154	1.181	1.209	1.239	1.271	1.303	1.337	
FROM 2022						1.000	1.041	1.067	1.092	1.117	1.144	1.172	1.202	1.233	1.264	
FROM 2023							1.000	1.025	1.049	1.073	1.099	1.126	1.155	1.184	1.215	
FROM 2024								1.000	1.023	1.046	1.071	1.098	1.126	1.155	1.185	
FROM 2025									1.000	1.023	1.047	1.073	1.101	1.129	1.158	
FROM 2026										1.000	1.024	1.049	1.076	1.104	1.132	
FROM 2027											1.000	1.025	1.051	1.078	1.106	
FROM 2028	_								4 1 - 1			1.000	1.026	1.052	1.079	
FROM 2029	l Irr	nade	trom) "202" (0 NA	SA N	ew S	tart Ir	ntlatio	n Ind	ex"		1.000	1.026	1.052	
FROM 2030														1.000	1.026	
FROM 2031	(S	prea	dshe	et) –	dowr	nload	at								1.000	
FROM 2032			-	/				, , , ,	, , , ,,							

https://www.nasa.gov/offices/ocfo/sid/publications

UNIVERSITY OF MARYLAND

Example: Saturn V Development Costs

\$M2023	Real-Year \$M	Year
9239	763.4	1964
11,296	964.9	1965
13,007	1177.3	1966
11,961	1135.6	1967
9985	998.9	1968
5051	534.5	1969
4284	484.4	1970
1574	189.1	1971
1122	142.5	1972
195.9	26.3	1973
67,716	6417	Totals (\$M)
st Estimation and Engi		SITY OF



Spacecraft/Vehicle Level Costing Model

Spacecraft Type	Nonrecurring a	Nonrecurring b	1st unit production a	1st unit production b
Launch Vehicle Stage	12.73	0.55	0.3024	0.662
Crewed Spacecraft	36.12	0.55	1.015	0.662
Uncrewed Planetary	20.42	0.55	1.574	0.662
Uncrewed Earth Orbital	6.145	0.55	0.6977	0.662
Liquid Rocket Engine	51.43	0.55	0.2829	0.662
Scientific Instrument	3.284	0.5	0.4651	0.7

13

 $C(\$M) = a \left[m_{inert} \langle kg \rangle \right]^b$

2023\$

Implications of CERs

- Launch Vehicles
 - − Model range 3480 \rightarrow 89,507 kg
 - Nonrecurring $1.13B \rightarrow 6.74B \Rightarrow 324K \rightarrow 75K/kg$ inert mass
 - − 1st Unit $67M \rightarrow 574M \Rightarrow 19.2K \rightarrow 6.4K/kg$ inert mass
- Crewed Spacecraft
 - Model range 231-69,638 kg
 - Nonrecurring \$721M \rightarrow \$16.6M \Rightarrow \$3120K \rightarrow \$239K/kg inert mass
 - − 1st Unit $37M \rightarrow 1631M1 \Rightarrow 161K \rightarrow 23.4K/kg$ inert mass
- All costs in \$2023

UNIVERSITY OF MARYLAND

\Rightarrow \$324K \rightarrow \$75K/kg inert mass 2K \rightarrow \$6.4K/kg inert mass

\Rightarrow \$3120K \rightarrow \$239K/kg inert mass 61K \rightarrow \$23.4K/kg inert mass

14

Space Vehicle Level Costing Model

System Type

Crew Capsule Descent Stage (Cryogenic) Descent Stage (Storable) Ascent Stage (Cryogenic) Ascent Stage (Storable) Surface Habitat (4 crew) In-Space Habitat (4 crew) Propulsive Stage (Cryogenic) Propulsive Stage (Storable) Propellant Depot

from Arney and Wilhite, "Rapid Cost Estimation for Space Exploration Systems" AIAA 2012-5183, ALAA Space 2012, Pasadena, California, Sept. 2012

UNIVERSITY OF MARYLAND

DDT&E	Cost CER	Flight Unit Cost CER			
Coeff	icients	Coefficients			
k∙a	b	k∙a	b		
380.09	0.2667	66.448	0.2409		
223.90	0.3152	9.1413	0.4146		
223.90	0.3152	6.5132	0.4146		
539.88	0.2151	123.40	0.1606		
539.88	0.2151	88.018	0.1606		
1000.4	0.1183	165.47	0.1402		
1940.2	0.0856	62.057	0.2146		
38.765	0.4554	3.4802	0.4782		
38.765	0.4554	2.4823	0.4782		
_ 100.48 _	0.3566	15.289	0.3175		

Costs corrected to \$M2023


More Notes about Cost Estimation

- There are multiple cost models
 - Each has their own cost estimating relations
 - They won't agree between models
- Choose the model best suited for the case being modeled for this class,

16

- Launch vehicles: use SVLCM
- Other (in-space) systems: use Arney & Wilhite
- proprietary! UNIVERSITY OF MARYLAND

• There are far more detailed costing models... which are highly

Costing Applied to Launch Vehicle Design

ΔV	Gross	Inert	NR Cost
Distribution	Mass	Masses	(\$M99)
(m/sec)	(kg)	(kg)	
4600	134,800	2,937	576
4600		<u>10,780</u>	<u>1177</u>
		13,721	1753
3356	139,000	2,066	474
5844		<u>11,123</u>	<u>1197</u>
		13,189	1672
2556	147,000	1,666	421
6644		<u>11,762</u>	<u>1235</u>
		13,428	1656
9200	226,400	18,115	1566
	Distribution (m/sec) 4600 4600 3356 5844 2556 6644	Distribution (m/sec) Mass (kg) 4600 134,800 4600 134,800 3356 139,000 5844 147,000 6644 147,000	Distribution (m/sec)Mass (kg)Masses (kg)4600134,8002,9374600134,8002,937460010,78010,7803356139,0002,066584411,12313,1892556147,0001,666664411,76213,428

5000 kg payload, LOX/LH2 engines

Cost Estimation and Engineering Economics ENAE 483/788D – Principles of Space Systems Design

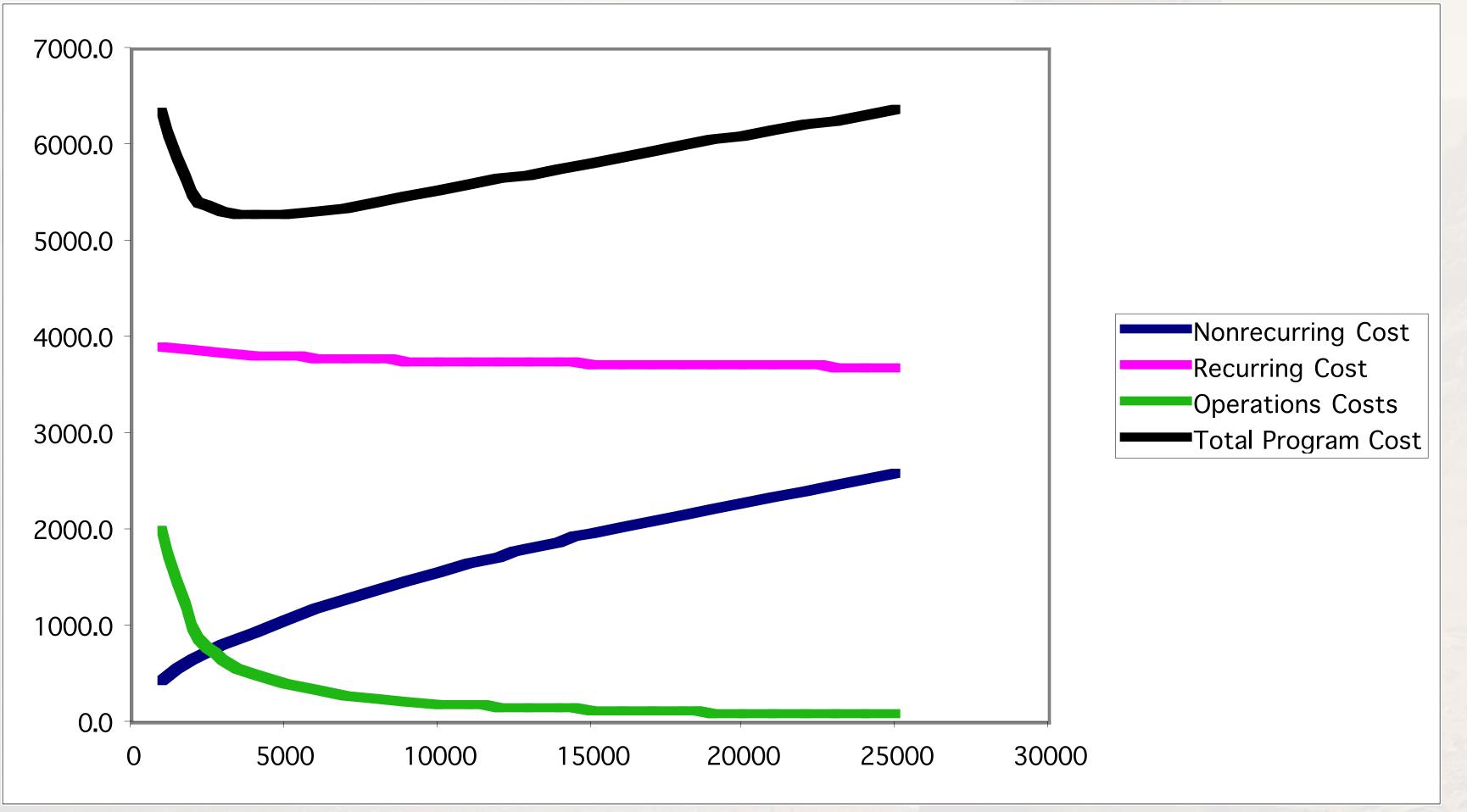
17

The Learning Curve

- The effort (time, cost, etc.) to perform a test decreases with repetition
- reduction of effort
 - is 80% of 4th...
- Cost of unit n: $C_n = C_1 n^p$ Average cost: $\bar{C}_n \approx C_1 \frac{n^p}{1+p}$

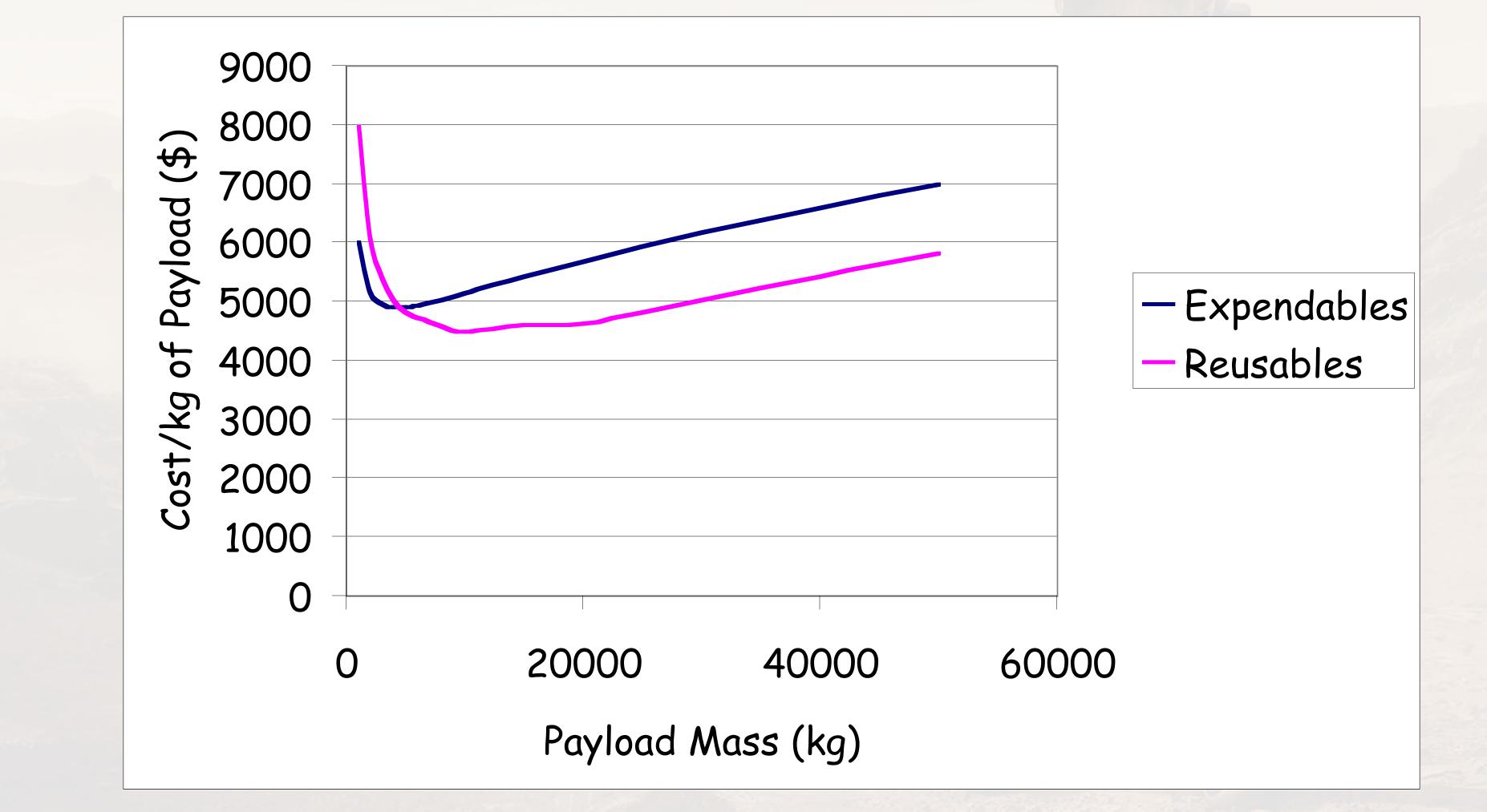
• Doubling the production run results in consistent fractional

– "80% learning curve" - 2nd unit costs 80% of 1st, 4th is 80% of 2nd, 8th

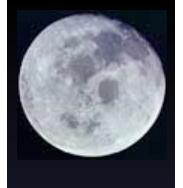

$$p = \frac{\log\left(\frac{C_2}{C_1}\right)}{\log\left(2\right)}$$

Cost and Learning Effects

Total Program Payload Mass = 1,000,000 kg


Payload Mass per Flight (kg)

Expendable/Reusable Trade Study


Total Market to Orbit=1,000,000 kg

20

Moon the to Return _ow-Cost

In-line SDLV Assumptions

- \$8.4B nonrecurring (published) estimate)
- 6 year development cycle
- \$400M first unit production (shuttle parallel)
- 10 units at 85% learning curve ln 0.85 \$285M average flight cost
- $p = -\frac{1}{\ln 2}$

Unit	Cost (\$M)	Unit	Cost (\$M)
1	400	6	263
2	340	7	253
3	309	8	246
4	289	9	239
5	274	10	233

Space Systems Laboratory – University of Maryland

the Moon to Return -ow-Cost

2000	Nonrecurring cost (\$M)	10,200
829	Average production cost per mission (\$M)	429
1096	Average amortized cost per mission (\$M)	1449
85	Total production run	10+10
432	NPV discounted cost per mission (\$M)	878

Space Systems Laboratory – University of Maryland

Head-to-Head Launch Comparison

the Moon to Return Low-Cost

	- <u> </u>	
\$432M	Baseline NPV discounted cost per mission	\$878M
\$432M	Development costs cut in half	\$508M
\$432M	Production costs cut in half	\$809M
\$432M	Production is free	\$740M
\$432M	All costs cut in half	\$439M

Space Systems Laboratory – University of Maryland

Sensitivity to Monolithic Costing

Cost Spreading Estimation

- Programs very seldom occur in a single funding year
- Costs are not constant from year to year
 - Low start-up costs
 - High costs during vehicle development and fabrication
 - Low end-of-life costs
- Costs are estimated using a beta function

Beta Function for Cost Spreading

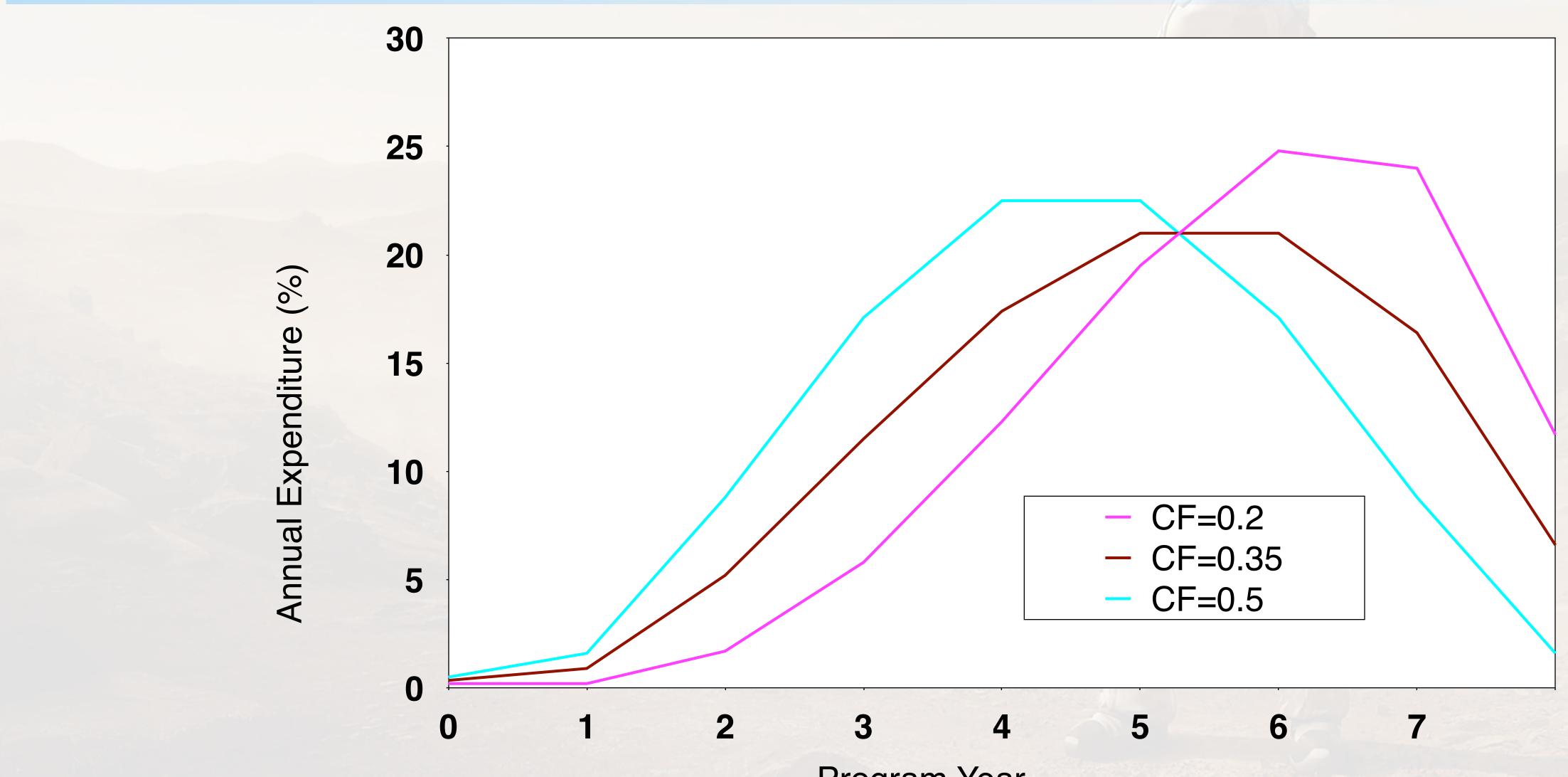
Cumulative normalized cost function

 C_{1}

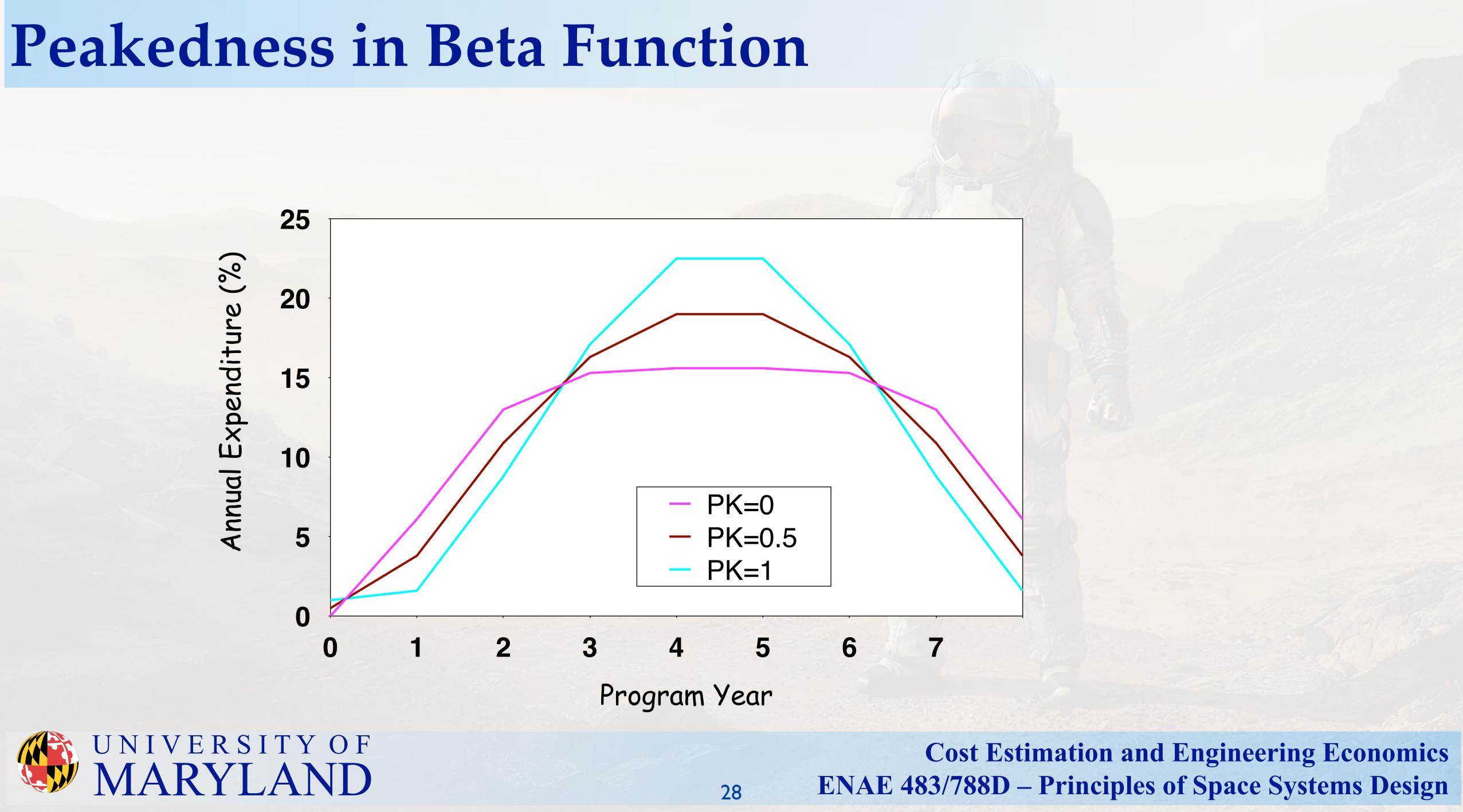
 $C(\tau) = 10\tau^2(1-\tau)^2(A+B\tau) + \tau^4(5-4\tau)$ - C = fraction of total program cost ($0 \le C \le 1$) - τ = fraction of total program time ($0 \le \tau \le 1$) - A and B = shape parameters ($0 \le A + B \le 1$) – Can also define equivalent parameters c_f (location of maximum) and P (width of peak) – $0 \le P \le 1$; $0.1875 \le c_f \le 0.8125$

$$c_{f} < 0.5 : A = \frac{(1-P)(c_{f} - 0.1875)}{0.625}; B = P \frac{c_{f} - 0.1875}{0.3125}$$
$$c_{f} \ge 0.5 : A = \frac{P(c_{f} - 0.8125) + (c_{f} - 0.1875)}{0.625}; B = P \frac{0.8125 - c_{f}}{0.3125}$$

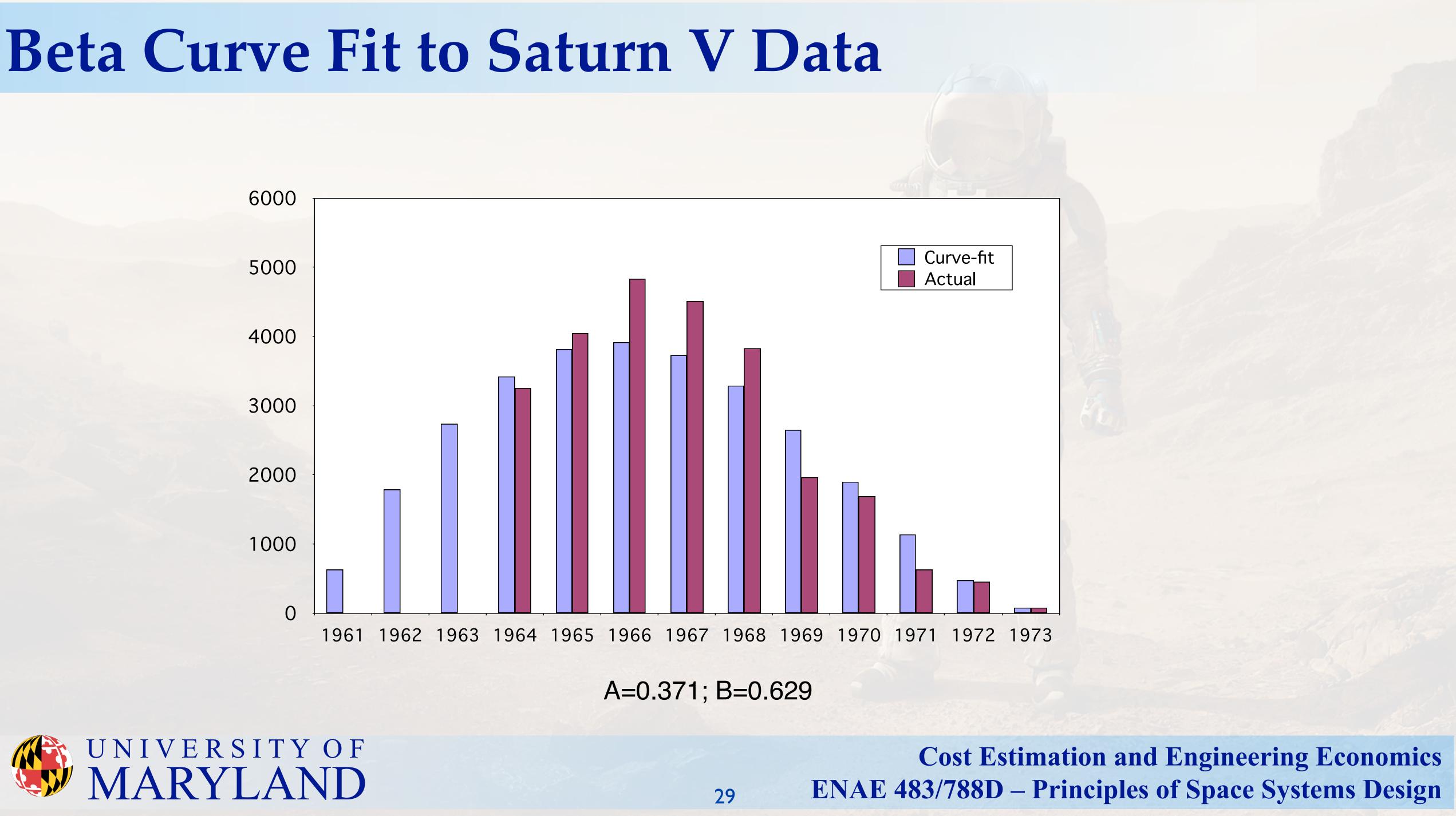
25


$$: A = \frac{(1-P)(c_f - 0.1875)}{0.625}; B = P \frac{c_f - 0.1875}{0.3125}$$
$$P(c_f - 0.8125) + (c_f - 0.1875); B = P \frac{0.8125 - c_f}{0.3125}; B = P \frac{0.8125 - c_f}{0.3125}$$

Cost Fraction in Beta Function


UNIVERSITY OF MARYLAND

Program Year


27

Cost Discounting

- Opportunity costs of money
- Analogous to compound interest at a bank Not the same thing as inflation
- Basic Definitions:
 - Net Present Value (NPV) value of future sum today
 - Net Future Value (NFV) value of sum today in the future
 - Discount Rate (r) annual interest rate
- Provides a method of comparing costs across multiple years

Basic Equations of Cost Discounting • Net Present Value (NPV) $C_i = C_i$ • Net Future Value (NFV) $C_{i+n} =$ NPV of constant annual pays $C_i = R^{-1}$

- NFV of constant annual payr
 - C_{i+n}

$$+n(1+r)^{-n}$$

$$C_i(1+r)^n$$

ments of R
$$-(1+r)^{-n}$$

$$r$$
ments of R
$$\frac{(1+r)^n - 1}{r}$$

Cost Estimation and Engineering Economics ENAE 483/788D – Principles of Space Systems Design

31

Cost Discounting Example: Saturn V Costs

\$M2000 3255.4 4045.8 4831.0 4515.3 3830.1 1962.0 1687.9 626.2 450.1 79.5 25283.4

UNIVERSITY OF MARYLAND

NPV (2000) (r=0.10)2959.4 3343.6 3629.6 3084.0 2378.2 1107.5 866.2 292.1 190.9 30.6 17882.3

NFV (2010) (r=0.10)7676.0 8672.5 9414.3 7999.1 6168.5 2872.6 2246.6 757.7 495.1 79.5 46382.0

Cost Discounting and Breakeven

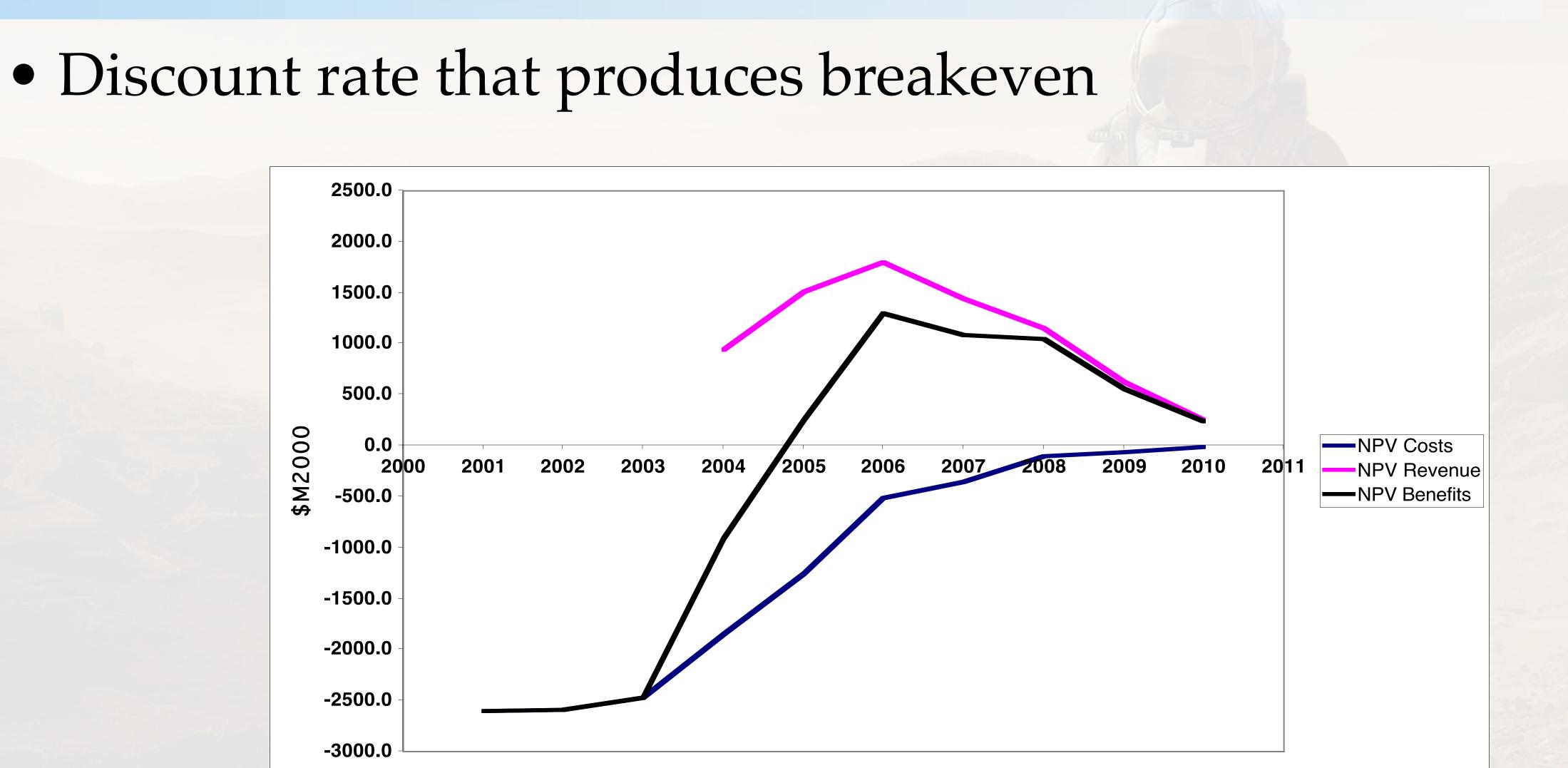
				NPV (2	2000)	
Year	\$M2000	Flights	Revenue	Costs	Revenue	
2001	3255			2959.4		
2002	4046			3343.6		
2003	4831	\$84	428/lb	3629.6		
2004	4515			3084.0		
2005	3830			2378.2		
2006	1962	3	5057	1107.5	2854.4	
2007	1688	3	5057	866.2	2594.9	
2008	626	3	5057	292.1	2359.0	
2009	450	3	5057	190.9	2144.5	
2010	79	3	5057	30.6	1949.6	
Totals	25283	15	25283	17882.3	11902.3	

Breakeven with Discounting

Year	\$M2000	Flights	Revenue	Costs	Revenue
2001	3255			2959	
2002	4046			3344	
2003	4831	\$12	,660/lb	3630	
2004	4515			3084	
2005	3830			2378	
2006	1962	3	7597	1108	4288
2007	1688	3	7597	866	3899
2008	626	3	7597	292	3544
2009	450	3	7597	191	3222
2010	79	3	7597	31	2929
Totals	25283	15	37986	17882	17882

UNIVERSITY OF MARYLAND

Effect of Moving Revenue Forward

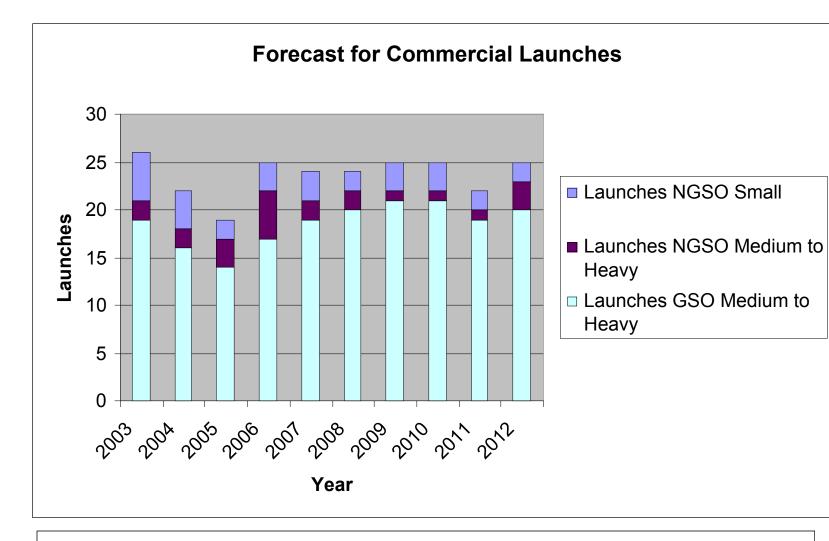

			NPV (2	2000)
\$M2000	Flights	Revenue	Costs	Revenue
3255			2959.4	
4046	\$11	480/lb	3343.6	
4831	Ψ,		3629.6	
4515	1	2295.2	3084.0	1567.7
3830	2	4590.5	2378.2	2850.3
1962	3	6885.7	1107.5	3886.8
1688	3	6885.7	866.2	3533.5
626	3	6885.7	292.1	3212.2
450	2	4590.5	190.9	1946.8
79	1	2295.2	30.6	884.9
25283	15	34429	17882.3	17882.3
	3255 4046 4831 4515 3830 1962 1688 626 450 79	3255 4046 \$11, 4831 4515 1 3830 2 1962 3 1688 3 626 3 450 2 79 1	4046\$11,480/lb48311451512295.2383024590.5196236885.7626362634502295.27912295.2	\$M2000 Flights Revenue Costs 3255 2959.4 4046 \$11,480/lb 3343.6 4831 \$11,480/lb 3629.6 4515 1 2295.2 3084.0 3830 2 4590.5 2378.2 1962 3 6885.7 1107.5 1688 3 6885.7 866.2 626 3 6885.7 292.1 450 2 4590.5 190.9 79 1 2295.2 30.6

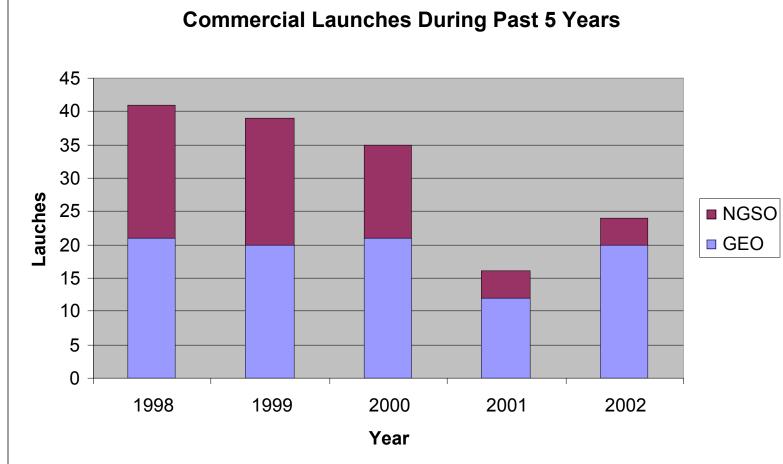
UNIVERSITY OF MARYLAND

Internal Rate of Return

Effect of IRR Targets

- Investors generally require specific minimum values of IRR
- Have to increase revenue stream to achieve IRR
- Saturn V launch case:
 - 10% IRR \$11,480/lb
 - 25% IRR \$17,580/lb
 - 50% IRR \$32,700/lb
- Venture capitalists general lo payback


pecific minimum values of IRR eam to achieve IRR

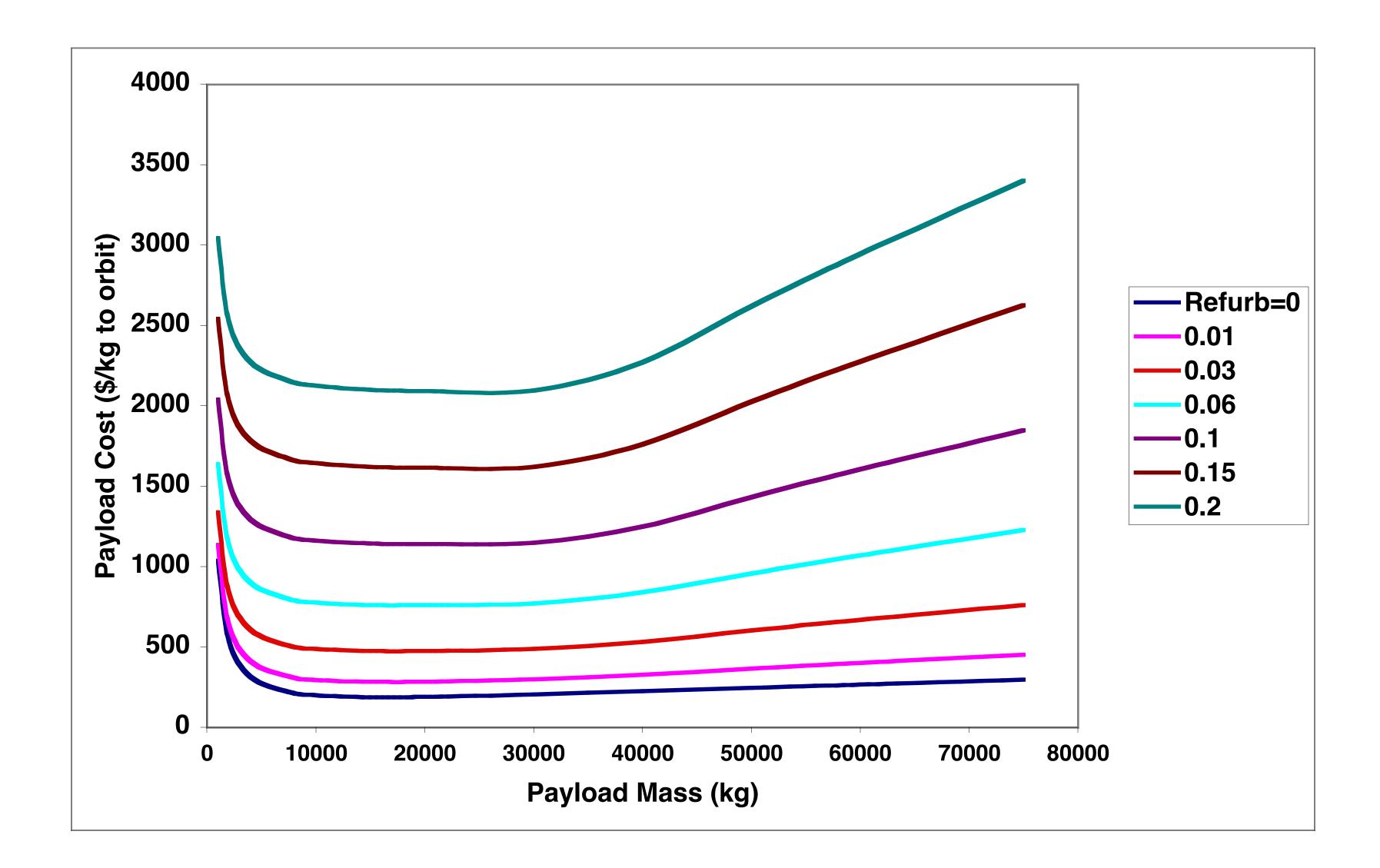

• Venture capitalists general look for 70-100% IRR with 18-month

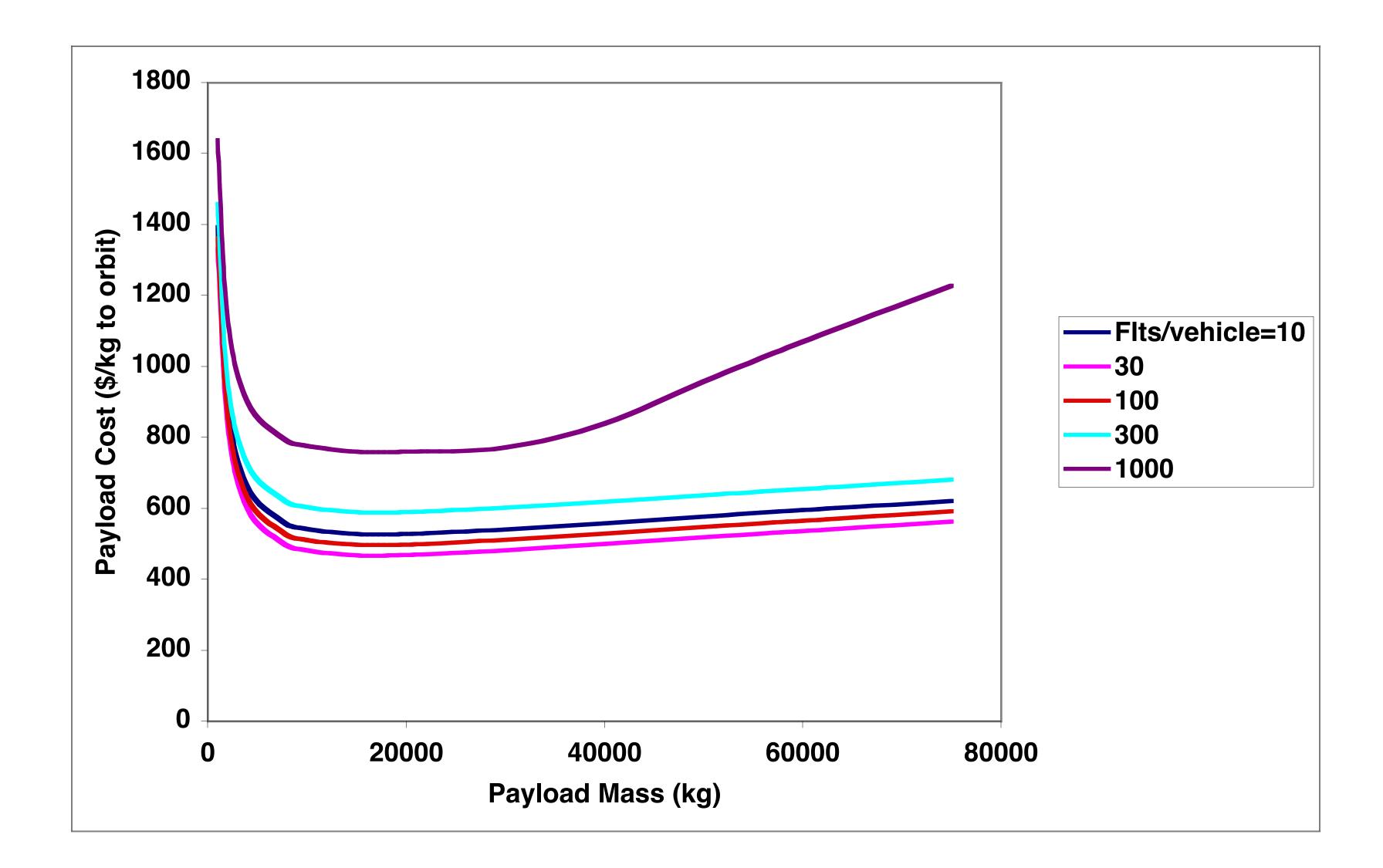
37

Cost Modeling

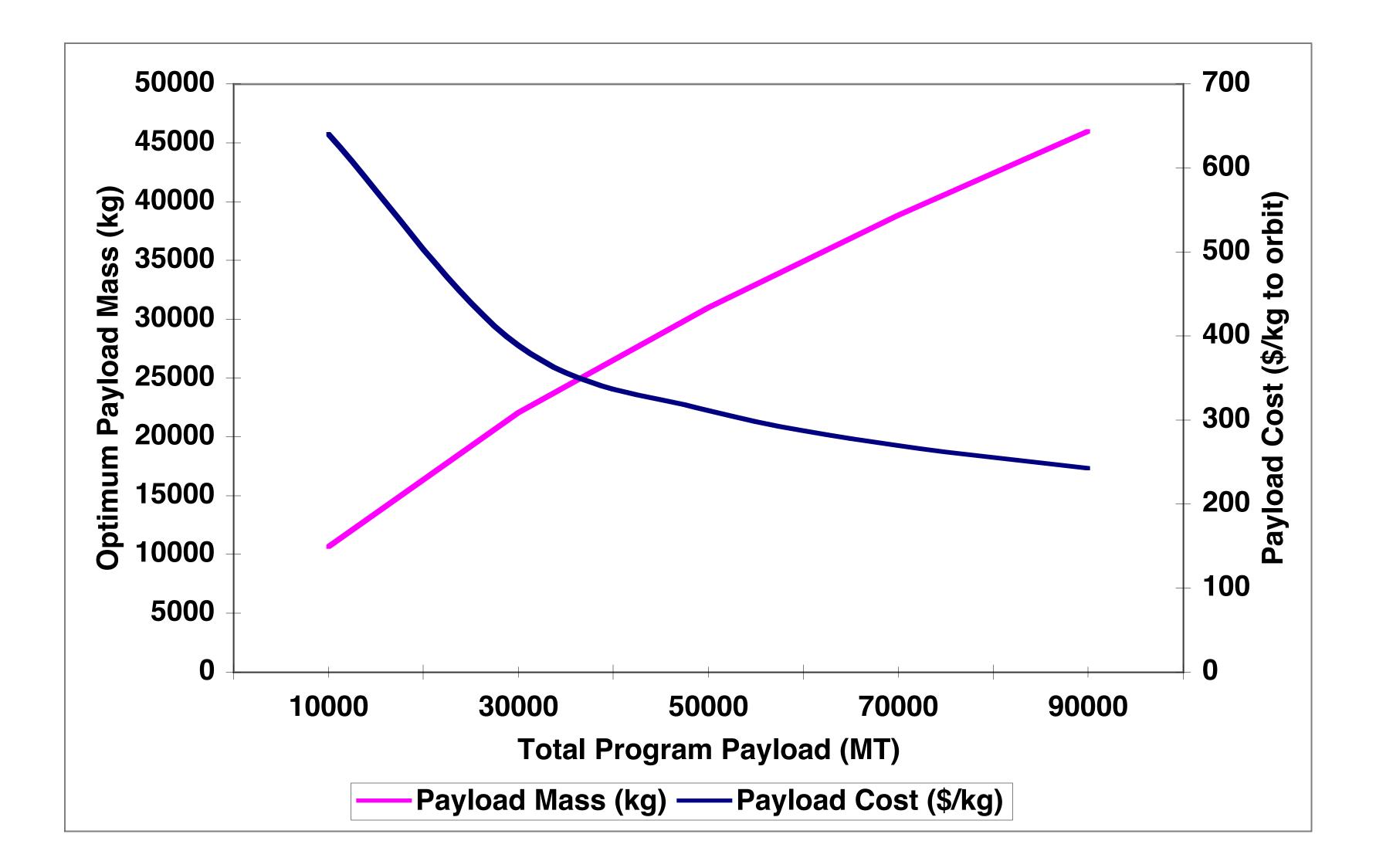
- At ~\$100M/launch, worldwide annual launch revenue is ~\$6-8 B
- Potential savings by cutting costs by factor of 2 is ~\$3-4 B
- Given a 10 year development program and a 10% discount rate (government support), maximum feasible program cost for new vehicle is ~\$2.5 B/yr
- At a 50% ROI (commercial), maximum yearly expenditure is ~\$70 M
- Only economically feasible as a government program
- Budget caps reduced if launch costs don't drop as much (e.g., 75% of current launch costs gives annual NTE of \$1.25 B)
- Incorporation of advanced technology is only justified insofar as it reduces launch costs
- Design goal is effective, not efficient!!!

Parametric Cost Analysis

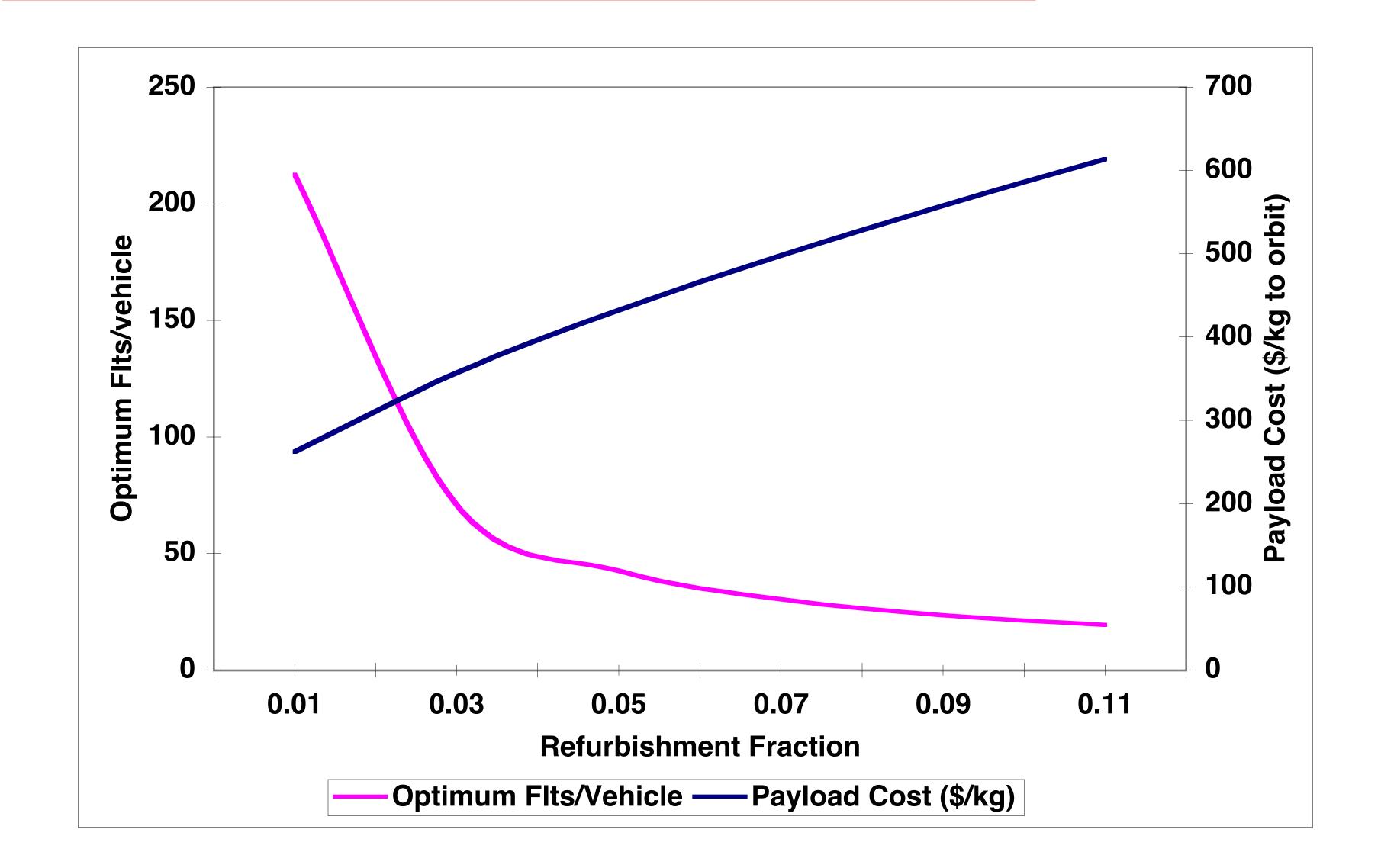

- Preliminary model developed to bound problem, identify critical parameters
- Assumptions:
 - Total program launch mass 20,000 MT
 - Program lifetime 20 years
 - NASA SLVLC model for cost estimates
 - 80% learning curve
 - $I_{sp}=420 \text{ sec avg.}$)


- Vehicle modeled as LOX/LH2 SSTO (δ =0.08;

Effect of Refurbishment Rate



Effect of Vehicle Lifetime


Effect of Total Launch Mass

Effect of Refurbishment Fraction

Costing Conclusions (to date)

- costs
 - Keep flight rate *and* production rates high to take advantage of learning curve
 - Strong sensitivity to fleet size
- Prediction: effects will be *worse* with RLV
 - Smaller fleet sizes
 - Higher (inert mass)/(payload mass) ratios
 - Effects of vehicle losses on program resiliency
- Need to add cost discounting
- Bottom line: compare cost of airbreathing RLV vs. rocket RLV vs. expendable launch vehicle (*not* a foregone conclusion!)

• Primary cost drivers are refurbishment and mission operations

References

- for Engineers and Managers, McGraw-Hill, 1971
- Arney and Wilhite, "Rapid Cost Estimation for Space Pasadena, California, Sept. 2012
- 2011

• Richard de Neufville and Joseph H. Stafford, Systems Analysis

Exploration Systems" AIAA 2012-5183, AIAA Space 2012,

• Wertz, Everett, and Puschell, ads., Space Mission Engineering: The New SMAD, Space Technology Library, Microcosm Press,

45

