Thermal Analysis and Modeling

e Cooling humans

e Fundamentals of heat transfer
e Radiative equilibrium

e Surface properties

e Non-ideal effects

e Conduction

¢ Human thermal modeling

e Thermal system components

© 2021 David L. Akin - All rights reserved
http://spacecraft.ssl.umd.edu

@ UNIVERSITY OF Thermal Analysis and Modeling

M ARYL AND ,  ENAE 697 - Space Human Factors and Life Support



http://spacecraft.ssl.umd.edu

Cooling and Energy Use in Lunar Run
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So What Is 2000 BTU?

e 2000 BTU/hr =504 kcal/ hr (or “calories” of food)

e Would heat 8 kg of water from body temperature
(37°C) to boiling

e Water heat of vaporization = 2257 kJ / kg = 535
kcal /kg

e Need to convert 0.94 kg of water to vapor
e At 70°F air can hold 1.15 Ibs of water per KCFM

e Suit flow rate of 6 CFM = 3 gms/minute = 0.19 kg/
hr =100 kcal /hr =397 BTU /hr
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Sublimation to Dump Heat

e Flow water over porous plate exposed on other
side to vacuum

— Water passing through pores evaporates in vacuum -
cools at rate of 535 kcal / kg

— Plate reaches 0°C and water in pores freezes

— Water at vacuum surface sublimates (solid—>gas)

e Heat of melting 80 kcal / kg
e Heat of vaporization 535 kcal / kg
e Total heat of sublimation 615 kcal / kg

e Cooling 2000 BTU /hr (504 kcal /hr) requires 0.82

kg of water (ideal case)
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Sublimator Schematic
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Sublimator Vapor “Cloud” on Moon
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Past PLSS Thermal Capacities

e Apollo
— 8 hrs @930 BTU / hr
— 6 hrs @ 1200 BTU / hr
— 5hrs @ 1600 BTU / hr

e Shuttle/ISS EMU

— 7 hrs @ 1000 BTU /hr (PLSS contains 3.9 kg of water -
previous calculation predicts 2.87 kg)

e Advanced EMU (development)

— 8 hrs @ 1200 BTU / hr
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Issues with Sublimators

e Have to be “charged” - i.e., run water through long
enough to freeze porous plate

e Susceptible to contamination damage (e.g.,

plugging pores in plate)

e [ssues with liquid/gas separation (cooling both
LCVG water and suit atmosphere)

* Only works in conditions below triple point of

water
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Phase Curves for CO,; and H,O

Temperature
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Suit Membrane Water Evaporator

’ Inlet water (warm) ||» Outlet water (cold) . Vapor flow
Ref: Bue et.al., “Long-Duration Testing of a Spacesuit Water Membrane Evaporator Prototype” 42nd ICES, AIAA 2012-3459
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SWME Fundamentals

e 14,900 hollow fibers carrying water for cooling

e Hydrophobic fiber material rejects water, but
allows water vapor to pass

e Chamber pressure is controlled with a back-
pressure regulator

e Rate of evaporation (and rate of cooling) controlled
by internal pressure in chamber

e Evaporated vapor purged through regulator to
ambient

e Evaporation provides 87% of sublimation cooling
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Classical Methods of Heat Transfer

e Convection
— Heat transferred to cooler surrounding gas, which
creates currents to remove hot gas and supply new cool
gas
— Don’t (in general) have surrounding gas or gravity for
convective currents

e Conduction

— Direct heat transfer between touching components
— Primary heat flow mechanism internal to vehicle

e Radiation
— Heat transferred by infrared radiation

~ — Only mechanism for dumping heat external to vehicle
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Ideal Radiative Heat Transfer

Planck’s equation gives energy emitted in a specific
frequency by a black body as a function of

temperature
2
2mhC, , ,
e — - = (Don’t worry, we won’t
AD _h C actually use this equation for
)LS exp 01 _ 1| anything...)
AT
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The Solar Spectrum
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Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press, 1994
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Ideal Radiative Heat Transfer

Planck’s equation gives energy emitted in a specific
frequency by a black body as a function of

temperature
P 2 7hC?

€ob
X exp( —hCO) -1
_ AT

e Stefan-Boltzmann equation integrates Planck’s
equation over entire spectrum

4 -8 W (“Stefan-Boltzmann
Prad ez 0 =5.67x10 2 07-4 Constant”)
K
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Thermodynamic Equilibrium

e First Law of Thermodynamics

dU
—W =—
¢ dt

heat in -heat out = work done internally
e Heat in = incident energy absorbed
* Heat out = radiated energy

e Work done internally = internal power used
(negative work in this sense - adds to total heat in
the system)
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Radiative Equilibrium Temperature

e Assume a spherical black body of radius r
e Heat in due to intercepted solar flux
Q =Ilar’

e Heat out due to radiation (from total surface area)
Q. =4nr’oT"

e For equ1hbr1um set equal
Inr’=4xroT' =1 = 40T"

e 1 AU: 1=1394 W/m?2; T. =280°K

&)
T = s
“ \4o
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Effect of Distance on Equilibrium

Black Body Equilibrium Temperature
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Shape and Radiative Equilibrium

e A shape absorbs energy only via illuminated faces
e A shape radiates energy via all surface area

e Basic assumption made is that black bodies are
intrinsically isothermal (perfect and instantaneous
conduction of heat internally to all faces)

@ UNIVERSITY OF Thermal Analysis and Modeling

M ARYL AND o0 ENAE 697 - Space Human Factors and Life Support



Effect of Shape on Black Body Temps

700

s S

——Sphernical Black Body
—-=—Adiabatic Black Wall
——Double-Sided Wall

Black Body Equl{L?(r}l um Temperature

400 -
300 -
200 -
100 -
0 . .
0.1 1 10 100
Distance from Sun (AU)
@ UNIVERSITY OF Thermal Analysis and Modeling
L~ // M ARYL AND o1 ENAE 697 - Space Human Factors and Life Support



Incident Radiation on Non-Ideal Bodies

Kirchkoft’s Law for total incident energy flux on solid bodies:

ancident = absorbed+ reflected + transmitted

Qabsorbed_l_ Qreﬂected + Qtransmitted =1

ancident ancident ancident

o = Qabsorbed. p — QV€ﬂ€Cf€d - Qtransmitted
- ’

; =
ancident ancident ancident

— 0L =absorptance (or absorptivity)

where
— p =reflectance (or reflectivity)
— T =transmittance (or transmissivity)
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Non-Ideal Radiative Equilibrium Temp

e Assume a spherical black body of radius r
e Heat in due to intercepted solar flux
2
Q =lanr
e Heat out due to radiation (from total surface area)
2 pd

Q,=347T1r7°€0T " (¢ = “cpissivity” -

etficiency ot surface

_ A
For equlhbr um, set equal at radiating heat)

2 2 4 E 4 a I ¢ %
larnr” =4xr’eol =1 =4—0ol" 1, =—
a ¢ 40
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Effect of Surface Coating on Temperature
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Non-Ideal Radiative Heat Transfer

e Full form of the Stefan-Boltzmann equation
P,.=ecA(T* -T} )

rad eny

where T, _=environmental temperature (=4°K for
space)

e Also take into account power used internally

4 4
Isa As + })int = EGArad(T o Tvenv)
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Example AERCam/ SPRINT

e 30 cm diameter sphere

o 0=0.2; €=0.8

e P —200W

“”llwi e T, =280°K (cargo bay below;
f Earth above)

e Analysis cases:

/
T
-
kS

— Free space w/o sun
— Free space w/sun
— Earth orbit w/o sun
— Earth orbit w/sun
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AERCam/SPRINT Analysis (Free Space)
e A=0.0707 m% A_,=0.2827 m?

* Free space, no sun

/ \/

P =coA T'=T-= ZOO‘E/ =354°K
O.8(5.67x10‘8 ot [(0-2827m)
\ m-K :
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AERCam/SPRINT Analysis (Free Space)
e A=0.0707 m% A_,=0.2827 m?

e Free space with sun

Y4
4
4 loaA + P
laA +P,  =¢c0A /T " =T="—"—"""| =362°K
EOA,
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AERCam/SPRINT (LEO Cargo Bay)
e T, ,~280°K

e LEO cargo bay, no sun

/.

200W
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Radiative Insulation

e Thin sheet (mylar/kapton
o s with surface coatings) used to
isolate panel from solar flux
“ ] e Panel reaches equilibrium
= - with radiation from sheet and
- from itself reflected from sheet
” _ | © Sheet reaches equilibrium
e, with radiation from sun and
panel, and from itself reflected
Tinsula‘rion Twall off panel
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Multi-Layer Insulation (MLI)

e Multiple insulation
> > > > layers to cut down
< s PR o

on radiative
transfer

= <—> <—> <—> e (Gets
computationally

~ - - N intensive quickly

e Highly effective
means of insulation
2 -> > > > | * Biggest problem is
D e < :
existence of
conductive leak
paths (physical
connections to
insulated
components)
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Emissivity Variation with MLI Layers
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Ref: D. 6. Gilmore, ed., Spacecraft Thermal Control Handbook ATAA, 2002
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MLI Thermal Conductivity
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Ref: D. 6. Gilmore, ed., Spacecraft Thermal Control Handbook AIAA, 2002
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Effect of Ambient Pressure on MLI
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1D Conduction

e Basic law of one-dimensional heat conduction
(Fourier 1822)

dT
= _KA—
¢ dx

where
K=thermal conductivity (W/m°K)
A=area

dT/dx=thermal gradient
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3D Conduction

General differential equation for heat flow in a solid

)+ g(r.t)  pe 9T(r,1)
K K ot

VT(

where
g(r,t)=internally generated heat
p=density (kg/ma3)
c=specific heat (J / kg°K)
K/ pc=thermal diffusivity
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Simple Analytical Conduction Model

e Heat flowing from (i-1) into (i)

ST | T T T — T
= —KA l i—1
On Ax
e Heat flowing from (i) into (i+1)
1. . -T.
— _m i+1 I
QOl/tf Ax

e Heat remaining in cell

pc 1(j+ 1D - T,(j)

Qout _ Qi no K A {
@ UNIVERSITY OF Thermal Analysis and Modeling
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Finite Difference Formulation

e Time-marching solution
e T T

where

a At

d = Bt

- Ax? pCy
e For solution stability,
Ax?

At < ——
200
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Human Thermal Model (Wissler)

* 15 elements per

HEAD
bOdy PROXIMAL MEDIAL DISTAL @ PROXIMAL MEDIAL DISTAL
= 15 d LEFT ARM LEFT ARM LEFT ARM RIGHT ARM RIGHT ARM RIGHT ARM
noaes per @ ® o @ D)
element ™ UPPER
' . TORSO
e Additional wxso | @
elements: oAl @ © | oA
e.g., skin, sweat,
e LEFTLEG O M
circulation e 0] @] B
¢ ~300 nodes in full |
model
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Human Thermal Model METMAN
* 10 element in body Q |
* 4 nodes per element = N

— Skin 3 2 ‘ o
— Fat @ B
§

— Muscle E=1F= \

— Core ; 6 \_/

* Blood is separate node

e 41 nodes total ﬁ ] \ﬁ?
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Energy Balance in Each Node

QSt : Qm o QC o Q?“ _ Qe _ Qk ol Qresp = QLC’G — mCPa_T

e Q. - heat rate saved into tissue ot
 Qm - heat rate due to internal metabolism

* Q.- heat rate due to surface convection

e ;- heat rate due to radiative losses

* Q.- heat rate due to evaporation

e Qx - heat rate due to conduction to other nodes

® Qresp - heat rate due to respiratory cooling

* QicG - heat rate due to liquid cooling garment
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41-Node Heat Flow Equations (1)

Core layer:

dT,
Mccpcg = mb-—»ccpb(Tb - Tc) + Gch(Tm - Tc)

T Qmet _ Qresp
Muscle layer:

dl;
Mmcpmd_t = My meb(Tb - Tm) £ GCHm(TC - Tm)

+ GfH m(Tf _ Tm) T Qmet — Qshiv - Qresp
from Campbell, French, Nair, and Miles, ‘““Thermal Analysis and Design of an Advanced Space Suit”
J. Thermophysics and Heat Transfer, v.14 n.2, April-June 2000
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41-Node Heat Flow Equations (2)

trom Campbell, French, Nair, and Miles,

Fat layer:
dT

MfCPfd_tf = My s CPul Ty — Tp) F Gijos g (T = Tp)

+ GSHf(Ts B Tf) ¥ Qmet - Qresp

Skin layer:
dT.

Mscpsd_ts =mb—»scpb(Tb - Ts) 3 Gst(Tf - Ts)

+ Qmet -

Blood pool:

Qlat e

MbCPb

QLCG e QVG - quit

Cpbz Zmb—sz(sz_ )

i=1 j=1
Thermal Analysis and Design of an Advanced Space Suit”

J. Thermophysics and Heat Transfer, v.14 n.2, April-June 2000
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ISS Radiator Assembly
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Case Study: ECLIPSE Thermal Analysis

* Developed by
/ X UMd SSL for
NASA ESMD

e Minimum
functional habitat
element for lunar
outpost

e Radiator area -
upper dome and

SIX upper
- cylindrical panels
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ECLIPSE Heat Sources

e Solar heat load (modeling habitat as right circular

cylinder) .
Ailluminated = {d sin 6 = ZT‘_dQ COS 6

Qsolar == Ailluminatedals

e Electrical power load = 4191 W
e Metabolic work load (4 crew) = 464 W
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Thermal Modeling for Lunar Surface

e Assume upper dome radiates only to deep space

e Assume side panels radiate half to deep space and
half to lunar surface

e Assume (conservatively) that lunar surface
radiates as a black body

1
Qintefrnal = Qsolar =rCEk [Adomequlad S5 n"radApanel (Tfad — §T;4noon>]

1
T 1 (Qinternal = Qsolar 4 1 = A T4 )} 7
rad — = lradwall
Adome 2 n?“adApanel €o 2 moon
@ ULV = B Thermal Analysis and Modeling
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ECLIPSE Thermal Results

Case Solar Angle | Lunar Surface | Active Wall | Radiator Temp
(deg) Temp (K) Panels (K)

Polar Qutpost 38 180 5 993
Day
Local Midnight N/A 120 1 285
Typicat Hlid- 45 215 4 287
latitude
Equatorial 0 380 6t 200
Noon

TRadiator geometry modified to reduce total lunar surface exposure

&
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